官术网_书友最值得收藏!

Installing and configuring nVidia video card drivers

In this recipe, we will embrace Compute Unified Device Architecture (CUDA), the nVidia parallel computing architecture. The first step will be the installation of the nVidia developer display driver followed by the installation of the CUDA toolkit. This will give us dramatic increases in computer performance with the power of the GPU which will be used in scenarios like password cracking.

Note

For more information about CUDA, please visit their website at http://www.nvidia.com/object/cuda_home_new.html.

Getting ready

An Internet connection is required to complete this recipe.

The preparation of kernel headers is needed before starting this task, which is explained in the Preparing kernel headers recipe at the beginning of this chapter.

In order to accomplish the installation of the nVidia driver, the X session needs to be shut down.

How to do it...

Let's begin the process of installing and configuring the nVidia video card drivers:

  1. Download the nVidia developer display driver according to your CPU architecture:
    cd /tmp/
    wget http://developer.download.nvidia.com/compute/cuda/4_1/rel/drivers/NVIDIA-Linux-x86_64-285.05.33.run
    
  2. Install the driver:
    chmod +x NVIDIA-Linux-x86_64-285.05.33.run
    ./NVIDIA-Linux-x86_64-285.05.33.run –kernel-source-path='/usr/src/linux'
    
  3. Download the CUDA toolkit:
    wget http://developer.download.nvidia.com/compute/cuda/4_1/rel/toolkit/cudatoolkit_4.1.28_linux_64_ubuntu11.04.run
    
  4. Install the CUDA toolkit to /opt:
    chmod +x cudatoolkit_4.1.28_linux_64_ubuntu11.04.run
    ./cudatoolkit_4.1.28_linux_64_ubuntu11.04.runConfigure the environment variables required for nvcc to work:
    echo PATH=$PATH:/opt/cuda/bin >> ~/.bashrc
    echo LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/cuda/lib >> ~/.bashrc
    echo export PATH >> ~/.bashrc
    echo export LD_LIBRARY_PATH >> ~/.bashrc
    
  5. Run the following command to make the variables take effect:
    source ~/.bashrc
    ldconfig
    
  6. Install pyrit dependencies:
    apt-get install libssl-dev python-dev python-scapy
    
  7. Download and install the GPU powered tool, pyrit:
    svn co http://pyrit.googlecode.com/svn/trunk/ pyrit_src
    cd pyrit_src/pyrit
    python setup.py build
    python setup.py install
    
  8. Finally, add the nVidia GPU module to pyrit:
    cd /tmp/pyrit_src/cpyrit_cuda
    python setup.py build
    python setup.py install
    
Note

To verify if nvcc is installed correctly, we issue the following command:

nvcc –V

To perform a benchmark, we simply type the following command:

pyrit benchmark
主站蜘蛛池模板: 遵义县| 固镇县| 临西县| 远安县| 奉化市| 吕梁市| 赫章县| 吉安县| 疏附县| 罗定市| 浦城县| 屏东市| 分宜县| 乐都县| 无极县| 偃师市| 古丈县| 乐业县| 杭锦后旗| 滕州市| 沙洋县| 诸城市| 湖南省| 隆安县| 龙门县| 金坛市| 三门县| 禄丰县| 水富县| 德庆县| 张北县| 什邡市| 阜宁县| 汕尾市| 深泽县| 嵊泗县| 丁青县| 香河县| 万州区| 秀山| 九龙县|