- IPython Interactive Computing and Visualization Cookbook
- Cyrille Rossant
- 100字
- 2021-08-05 17:57:28
Chapter 4. Profiling and Optimization
In this chapter, we will cover the following topics:
- Evaluating the time taken by a statement in IPython
- Profiling your code easily with cProfile and IPython
- Profiling your code line-by-line with line_profiler
- Profiling the memory usage of your code with memory_profiler
- Understanding the internals of NumPy to avoid unnecessary array copying
- Using stride tricks with NumPy
- Implementing an efficient rolling average algorithm with stride tricks
- Making efficient array selections in NumPy
- Processing huge NumPy arrays with memory mapping
- Manipulating large arrays with HDF5 and PyTables
- Manipulating large heterogeneous tables with HDF5 and PyTables
推薦閱讀
- Node.js+Webpack開發實戰
- TensorFlow Lite移動端深度學習
- Mastering Ember.js
- Mastering QGIS
- Web Development with Django Cookbook
- Architecting the Industrial Internet
- C語言程序設計
- Access 2010數據庫基礎與應用項目式教程(第3版)
- HDInsight Essentials(Second Edition)
- 單片機應用與調試項目教程(C語言版)
- 劍指Java:核心原理與應用實踐
- 零基礎入門學習Python(第2版)
- BeagleBone Black Cookbook
- Mastering Unity 2D Game Development(Second Edition)
- Visual Foxpro 9.0數據庫程序設計教程