References
- Bai, J. (2003): Inferential theory for factor models of large dimensions. Econometrica, 71:135-171.
- Bialkowski, J., Darolles, S., and Le Fol, G. (2008): Improving VWAP strategies: A dynamic volume approach. Journal of Banking & Finance, 32:1709-1722.
- Brownlees, C. T., Cipollini, F., and Gallo, G. M. (2011): Intra-daily volume modeling and prediction for algorithmic trading. Journal of Financial Econometrics, 9:489-518.
- Hmaied, D. M., Sioud, O. B., and Grar, A. (2006): Intra-daily and weekly patterns of bid-ask spreads, trading volume and volatility on the Tunisian Stock Exchange. Banque & Marchés, 84:35-44.
- Hussain, S. M. (2011): The intraday behavior of bid-ask spreads, trading volume, and return volatility: Evidence from DAX30. International Journal of Economics and Finance, 3:23-34.
- Kaastra, I. and Boyd, M. S. (1995): Forecasting futures trading volume using neural networks. The Journal of Futures Markets, Vol. 15, No. 8,:953-970.
- Lux, T. and Kaizoji, T. (2004): Forecasting volatility and volume in the Tokyo stock market: The advantage of long memory models. Economics working paper, Christian-Albrechts-Universit?t Kiel, Department of Economics.
推薦閱讀
- 測試驅動開發:入門、實戰與進階
- 算法精粹:經典計算機科學問題的Java實現
- Web程序設計(第二版)
- 基于Swift語言的iOS App 商業實戰教程
- 零基礎學Python網絡爬蟲案例實戰全流程詳解(入門與提高篇)
- Apache Kafka Quick Start Guide
- Learning Laravel's Eloquent
- Tableau 10 Bootcamp
- Learning Apache Karaf
- PHP 7從零基礎到項目實戰
- Python應用開發技術
- Modular Programming with PHP 7
- 數據科學之編程技術:使用R進行數據清理、分析與可視化
- F# for Machine Learning Essentials
- 深入解析WPF編程