官术网_书友最值得收藏!

Deploying on a cluster with YARN

Yet another resource negotiator (YARN) is Hadoop's compute framework that runs on top of HDFS, which is Hadoop's storage layer.

YARN follows the master slave architecture. The master daemon is called ResourceManager and the slave daemon is called NodeManager. Besides this application, life cycle management is done by ApplicationMaster, which can be spawned on any slave node and is alive for the lifetime of an application.

When Spark is run on YARN, ResourceManager performs the role of Spark master and NodeManagers work as executor nodes.

While running Spark with YARN, each Spark executor is run as YARN container.

Getting ready

Running Spark on YARN requires a binary distribution of Spark that has YARN support. In both Spark installation recipes, we have taken care of it.

How to do it...

  1. To run Spark on YARN, the first step is to set the configuration:
    HADOOP_CONF_DIR: to write to HDFS
    YARN_CONF_DIR: to connect to YARN ResourceManager
    $ cd /opt/infoobjects/spark/conf (or /etc/spark)
    $ sudo vi spark-env.sh
    export HADOOP_CONF_DIR=/opt/infoobjects/hadoop/etc/Hadoop
    export YARN_CONF_DIR=/opt/infoobjects/hadoop/etc/hadoop
    

    You can see this in the following screenshot:

  2. The following command launches YARN Spark in the yarn-client mode:
    $ spark-submit --class path.to.your.Class --master yarn-client [options] <app jar> [app options]
    

    Here's an example:

    $ spark-submit --class com.infoobjects.TwitterFireHose --master yarn-client --num-executors 3 --driver-memory 4g --executor-memory 2g --executor-cores 1 target/sparkio.jar 10
    
  3. The following command launches Spark shell in the yarn-client mode:
    $ spark-shell --master yarn-client
    
  4. The command to launch in the yarn-cluster mode is as follows:
    $ spark-submit --class path.to.your.Class --master yarn-cluster [options] <app jar> [app options]
    

    Here's an example:

    $ spark-submit --class com.infoobjects.TwitterFireHose --master yarn-cluster --num-executors 3 --driver-memory 4g --executor-memory 2g --executor-cores 1 targe
    t/sparkio.jar 10
    

How it works…

Spark applications on YARN run in two modes:

  • yarn-client: Spark Driver runs in the client process outside of YARN cluster, and ApplicationMaster is only used to negotiate resources from ResourceManager
  • yarn-cluster: Spark Driver runs in ApplicationMaster spawned by NodeManager on a slave node

The yarn-cluster mode is recommended for production deployments, while the yarn-client mode is good for development and debugging when you would like to see immediate output. There is no need to specify Spark master in either mode as it's picked from the Hadoop configuration, and the master parameter is either yarn-client or yarn-cluster.

The following figure shows how Spark is run with YARN in the client mode:

The following figure shows how Spark is run with YARN in the cluster mode:

In the YARN mode, the following configuration parameters can be set:

  • --num-executors: Configure how many executors will be allocated
  • --executor-memory: RAM per executor
  • --executor-cores: CPU cores per executor
主站蜘蛛池模板: 平和县| 靖西县| 镇安县| 神木县| 西平县| 桃江县| 文成县| 璧山县| 鄢陵县| 图们市| 古浪县| 尚义县| 喀喇| 曲阜市| 龙川县| 治多县| 汾阳市| 嘉兴市| 金山区| 金阳县| 沽源县| 巍山| 墨竹工卡县| 土默特左旗| 呼玛县| 库车县| 海盐县| 祁门县| 从化市| 阳朔县| 兴海县| 十堰市| 白朗县| 高清| 金昌市| 游戏| 潜山县| 马龙县| 嫩江县| 衡阳市| 厦门市|