官术网_书友最值得收藏!

Learn about the Python libraries we will be using

Seven Python libraries make up our Python business intelligence toolkit:

  • Pandas: A set of high-performance, easy-to-use data structures and data analysis tools. Pandas are the backbone of all our business intelligence tasks.
  • Scikit-learn: Gives us simple and efficient tools for data mining and data analysis including classification, regression, clustering, dimensionality reduction, model selection, and preprocessing. This will be the workhorse library for our analysis.
  • Numpy: An efficient multi-dimensional container of generic data that allows for arbitrary datatypes to be defined. We won't use numpy directly; however, Pandas relies on it.
  • Matplotlib: A 2D plotting library. We'll use this to generate all our charts.
  • PyMongo: Allows us to connect to and use MongoDB. We'll use this to insert and retrieve data from MongoDB.
  • XlsxWriter: This allows us to access and create Microsoft Excel files. This library will be used to generate reports in the Excel format.
  • IPython Notebook (Jupyter): An interactive computational environment. We'll use this to write our code so that we can get feedback faster than running a script over and over again.
主站蜘蛛池模板: 弋阳县| 江源县| 沙田区| 桂阳县| 科尔| 虹口区| 金门县| 长海县| 青岛市| 黄浦区| 蒲城县| 丽江市| 崇明县| 井研县| 玛纳斯县| 灌南县| 桃源县| 美姑县| 筠连县| 奉节县| 青岛市| 大港区| 莱芜市| 论坛| 安仁县| 博野县| 邵阳县| 鸡东县| 晴隆县| 抚远县| 罗平县| 平原县| 湘阴县| 湘西| 兰考县| 招远市| 舟曲县| 阿勒泰市| 松桃| 白城市| 平安县|