官术网_书友最值得收藏!

Blending behaviors by priority

Sometimes, weighted blending is not enough because heavyweight behaviors dilute the contributions of the lightweights, but those behaviors need to play their part too. That's when priority-based blending comes into play, applying a cascading effect from high-priority to low-priority behaviors.

Getting ready

The approach is very similar to the one used in the previous recipe. We must add a new member variable to our AgentBehaviour class. We should also refactor the Update function to incorporate priority as a parameter to the Agent class' SetSteering function. The new AgentBehaviour class should look something like this:

public class AgentBehaviour : MonoBehaviour
{
    public int priority = 1;
    // ... everything else stays the same
    public virtual void Update ()
    {
        agent.SetSteering(GetSteering(), priority);
    }
}

How to do it...

Now, we need to make some changes to the Agent class:

  1. Add a new namespace from the library:
    using System.Collections.Generic;
  2. Add the member variable for the minimum steering value to consider a group of behaviors:
    public float priorityThreshold = 0.2f;
  3. Add the member variable for holding the group of behavior results:
    private Dictionary<int, List<Steering>> groups;
  4. Initialize the variable in the Start function:
    groups = new Dictionary<int, List<Steering>>();
  5. Modify the LateUpdate function so that the steering variable is set by calling GetPrioritySteering:
    public virtual void LateUpdate ()
    {
        //  funnelled steering through priorities
        steering = GetPrioritySteering();
        groups.Clear();
        // ... the rest of the computations stay the same
        steering = new Steering();
    }
  6. Modify the SetSteering function's signature and definition to store the steering values in their corresponding priority groups:
    public void SetSteering (Steering steering, int priority)
    {
        if (!groups.ContainsKey(priority))
        {
            groups.Add(priority, new List<Steering>());
        }
        groups[priority].Add(steering);
    }
  7. Finally, implement the GetPrioritySteering function to funnel the steering group:
    private Steering GetPrioritySteering ()
    {
        Steering steering = new Steering();
        float sqrThreshold = priorityThreshold * priorityThreshold;
        foreach (List<Steering> group in groups.Values)
        {
            steering = new Steering();
            foreach (Steering singleSteering in group)
            {
                steering.linear += singleSteering.linear;
                steering.angular += singleSteering.angular;
            }
            if (steering.linear.sqrMagnitude > sqrThreshold ||
                    Mathf.Abs(steering.angular) > priorityThreshold)
            {
                return steering;
            }
    }

How it works...

By creating priority groups, we blend behaviors that are common to one another, and the first group in which the steering value exceeds the threshold is selected. Otherwise, steering from the least-priority group is chosen.

There's more...

We could extend this approach by mixing it with weighted blending; in this way, we would have a more robust architecture by getting extra precision on the way the behaviors make an impact on the agent in every priority level:

foreach (Steering singleSteering in group)
{
    steering.linear += singleSteering.linear * weight;
    steering.angular += singleSteering.angular * weight;
}

See also

There is an example of avoiding walls using priority-based blending in this project.

主站蜘蛛池模板: 如东县| 友谊县| 荣成市| 托克逊县| 蒙阴县| 东兰县| 荆门市| 防城港市| 宁晋县| 凭祥市| 策勒县| 黄大仙区| 北安市| 凌云县| 高淳县| 清苑县| 凤台县| 巫山县| 九龙坡区| 黄龙县| 洛南县| 曲沃县| 光泽县| 介休市| 尉犁县| 罗山县| 蓬莱市| 曲沃县| 易门县| 桂林市| 来凤县| 揭西县| 孝义市| 山西省| 抚顺市| 苏州市| 阳曲县| 托克逊县| 乌拉特后旗| 澄迈县| 乐昌市|