官术网_书友最值得收藏!

Locking with a C# lock keyword

This recipe will describe how to ensure that when one thread uses some resource, another does not simultaneously use it. We will see why this is needed and what the thread safety concept is all about.

Getting ready

To work through this recipe, you will need Visual Studio 2015. There are no other prerequisites. The source code for this recipe can be found at BookSamples\Chapter1\Recipe9.

How to do it...

To understand how to use the C# lock keyword, perform the following steps:

  1. Start Visual Studio 2015. Create a new C# console application project.
  2. In the Program.cs file, add the following using directives:
    using System;
    using System.Threading;
    using static System.Console;
  3. Add the following code snippet below the Main method:
    static void TestCounter(CounterBase c)
    {
      for (int i = 0; i < 100000; i++)
      {
        c.Increment();
        c.Decrement();
      }
    }
    
    class Counter : CounterBase
    {
      public int Count { get; private set; }
    
      public override void Increment()
      {
        Count++;
      }
    
      public override void Decrement()
      {
        Count--;
      }
    }
    
    class CounterWithLock : CounterBase
    {
      private readonly object _syncRoot = new Object();
    
      public int Count { get; private set; }
    
      public override void Increment()
      {
        lock (_syncRoot)
        {
          Count++;
        }
      }
    
      public override void Decrement()
      {
        lock (_syncRoot)
        {
          Count--;
        }
      }
    }
    
    abstract class CounterBase
    {
      public abstract void Increment();
    
      public abstract void Decrement();
    }
  4. Add the following code snippet inside the Main method:
    WriteLine("Incorrect counter");
    
    var c = new Counter();
    
    var t1 = new Thread(() => TestCounter(c));
    var t2 = new Thread(() => TestCounter(c));
    var t3 = new Thread(() => TestCounter(c));
    t1.Start();
    t2.Start();
    t3.Start();
    t1.Join();
    t2.Join();
    t3.Join();
    
    WriteLine($"Total count: {c.Count}");
    WriteLine("--------------------------");
    
    WriteLine("Correct counter");
    
    var c1 = new CounterWithLock();
    
    t1 = new Thread(() => TestCounter(c1));
    t2 = new Thread(() => TestCounter(c1));
    t3 = new Thread(() => TestCounter(c1));
    t1.Start();
    t2.Start();
    t3.Start();
    t1.Join();
    t2.Join();
    t3.Join();
    WriteLine($"Total count: {c1.Count}");
  5. Run the program.

How it works...

When the main program starts, it first creates an object of the Counter class. This class defines a simple counter that can be incremented and decremented. Then, we start three threads that share the same counter instance and perform an increment and decrement in a cycle. This leads to nondeterministic results. If we run the program several times, it will print out several different counter values. It could be 0, but mostly won't be.

This happens because the Counter class is not thread-safe. When several threads access the counter at the same time, the first thread gets the counter value 10 and increments it to 11. Then, a second thread gets the value 11 and increments it to 12. The first thread gets the counter value 12, but before a decrement takes place, a second thread gets the counter value 12 as well. Then, the first thread decrements 12 to 11 and saves it into the counter, and the second thread simultaneously does the same. As a result, we have two increments and only one decrement, which is obviously not right. This kind of a situation is called a race condition and is a very common cause of errors in a multithreaded environment.

To make sure that this does not happen, we must ensure that while one thread works with the counter, all other threads wait until the first one finishes the work. We can use the lock keyword to achieve this kind of behavior. If we lock an object, all the other threads that require an access to this object will wait in a blocked state until it is unlocked. This could be a serious performance issue and later, in Chapter 2, Thread Synchronization, you will learn more about this.

主站蜘蛛池模板: 八宿县| 武宣县| 屏东县| 遵义县| 长沙市| 苍山县| 丹江口市| 清原| 莲花县| 大足县| 阳原县| 长寿区| 西乌珠穆沁旗| 万安县| 景德镇市| 黄山市| 华阴市| 富裕县| 黔江区| 泽州县| 修文县| 平和县| 台北县| 天门市| 高要市| 遂宁市| 罗甸县| 饶河县| 伊金霍洛旗| 盘山县| 石城县| 伽师县| 报价| 石城县| 鄢陵县| 岑巩县| 大邑县| 本溪市| 开原市| 宣化县| 贺兰县|