- Learning Quantitative Finance with R
- Dr. Param Jeet Prashant Vats
- 170字
- 2021-07-09 19:06:54
Chapter 3. Econometric and Wavelet Analysis
In financial analytics, we need techniques to do predictive modeling for forecasting and finding the drivers for different target variables. In this chapter, we will discuss types of regression and how we can build a regression model in R for building predictive models. Also we will discuss, how we can implement a variable selection method and other aspects associated with regression. This chapter will not contain theoretical description but will just guide you in how to implement a regression model in R in the financial space. Regression analysis can be used for doing forecast on cross-sectional data in the financial domain. We will also cover frequency analysis of the data, and how transformations such as Fast Fourier, wavelet, Hilbert, haar transformations in time, and frequency domains help to remove noise in the data.
This chapter covers the following topics:
- Simple linear regression
- Multivariate linear regression
- Multicollinearity
- ANOVA
- Feature selection
- Stepwise variable selection
- Ranking of variables
- Wavelet analysis
- Fast Fourier transformation
- Hilbert transformation
- 平面設(shè)計初步
- SCRATCH與機器人
- 數(shù)據(jù)庫原理與應(yīng)用技術(shù)學(xué)習(xí)指導(dǎo)
- 工業(yè)機器人工程應(yīng)用虛擬仿真教程:MotoSim EG-VRC
- 現(xiàn)代機械運動控制技術(shù)
- 機器人創(chuàng)新實訓(xùn)教程
- 運動控制系統(tǒng)應(yīng)用與實踐
- 網(wǎng)中之我:何明升網(wǎng)絡(luò)社會論稿
- Apache源代碼全景分析(第1卷):體系結(jié)構(gòu)與核心模塊
- Learning Linux Shell Scripting
- AVR單片機工程師是怎樣煉成的
- 典型Hadoop云計算
- 網(wǎng)絡(luò)安全概論
- Practical Network Automation
- 巧學(xué)活用Linux