官术网_书友最值得收藏!

Chapter 3. Econometric and Wavelet Analysis

In financial analytics, we need techniques to do predictive modeling for forecasting and finding the drivers for different target variables. In this chapter, we will discuss types of regression and how we can build a regression model in R for building predictive models. Also we will discuss, how we can implement a variable selection method and other aspects associated with regression. This chapter will not contain theoretical description but will just guide you in how to implement a regression model in R in the financial space. Regression analysis can be used for doing forecast on cross-sectional data in the financial domain. We will also cover frequency analysis of the data, and how transformations such as Fast Fourier, wavelet, Hilbert, haar transformations in time, and frequency domains help to remove noise in the data.

This chapter covers the following topics:

  • Simple linear regression
  • Multivariate linear regression
  • Multicollinearity
  • ANOVA
  • Feature selection
  • Stepwise variable selection
  • Ranking of variables
  • Wavelet analysis
  • Fast Fourier transformation
  • Hilbert transformation
主站蜘蛛池模板: 南平市| 肇庆市| 柳州市| 敦煌市| 容城县| 峨边| 太仆寺旗| 宜宾县| 余江县| 长沙市| 阿克陶县| 监利县| 永靖县| 乐安县| 工布江达县| 绥化市| 和田县| 叙永县| 安福县| 合阳县| 新疆| 阳新县| 博爱县| 武山县| 洪湖市| 仁寿县| 旬阳县| 岳西县| 离岛区| 武城县| 察隅县| 湖南省| 青阳县| 舞阳县| 成武县| 和平区| 天津市| 报价| 廉江市| 辽源市| 镇宁|