官术网_书友最值得收藏!

Visualizing data using Matplotlib

We shall learn about visualizing the data in a later chapter. For now, let's try loading two sample datasets and building a basic plot. First, install the sklearn library from which we shall load the data using the following command:

$ pip3 install scikit-learn 

Import the datasets using the following command:

from sklearn.datasets import load_iris from sklearn.datasets import load_boston 

Import the Matplotlib plotting module:

from matplotlib import pyplot as plt %matplotlib inline 

Load the iris dataset, print the description of the dataset, and plot column 1 (sepal length) as x and column 2 (sepal width) as y:

iris = load_iris() 
print(iris.DESCR) 
data=iris.data 
plt.plot(data[:,0],data[:,1],".") 

The resulting plot will look like the following image:

Load the boston dataset, print the description of the dataset and plot column 3 (proportion of non-retail business) as x and column 5 (nitric oxide concentration) as y, each point on the plot marked with a + sign:

boston = load_boston()
print(boston.DESCR)
data=boston.data
plt.plot(data[:,2],data[:,4],"+")

The resulting plot will look like the following image:

主站蜘蛛池模板: 双江| 花垣县| 林甸县| 玉林市| 陇西县| 西畴县| 湘潭市| 金华市| 长阳| 独山县| 醴陵市| 同德县| 上栗县| 张北县| 方城县| 西乡县| 右玉县| 确山县| 财经| 卫辉市| 都兰县| 秦安县| 伊通| 勃利县| 宁陵县| 湛江市| 分宜县| 吉首市| 土默特右旗| 馆陶县| 金堂县| 饶阳县| 赤水市| 罗甸县| 屏东县| 延安市| 苍山县| 鸡泽县| 临武县| 陇川县| 靖远县|