- Python Data Analysis(Second Edition)
- Armando Fandango
- 169字
- 2021-07-09 19:04:03
Visualizing data using Matplotlib
We shall learn about visualizing the data in a later chapter. For now, let's try loading two sample datasets and building a basic plot. First, install the sklearn library from which we shall load the data using the following command:
$ pip3 install scikit-learn
Import the datasets using the following command:
from sklearn.datasets import load_iris from sklearn.datasets import load_boston
Import the Matplotlib plotting module:
from matplotlib import pyplot as plt %matplotlib inline
Load the iris
dataset, print the description of the dataset, and plot column 1 (sepal length) as x
and column 2 (sepal width) as y
:
iris = load_iris() print(iris.DESCR) data=iris.data plt.plot(data[:,0],data[:,1],".")
The resulting plot will look like the following image:

Load the boston dataset, print the description of the dataset and plot column 3 (proportion of non-retail business) as x
and column 5 (nitric oxide concentration) as y
, each point on the plot marked with a + sign:
boston = load_boston() print(boston.DESCR) data=boston.data plt.plot(data[:,2],data[:,4],"+")
The resulting plot will look like the following image:

- Vue.js 3.x快速入門
- Apache Mesos Essentials
- Web Development with MongoDB and Node(Third Edition)
- Python極簡講義:一本書入門數(shù)據(jù)分析與機(jī)器學(xué)習(xí)
- HTML5從入門到精通(第4版)
- Getting Started with Python and Raspberry Pi
- Clojure for Machine Learning
- HTML+CSS+JavaScript網(wǎng)頁設(shè)計(jì)從入門到精通 (清華社"視頻大講堂"大系·網(wǎng)絡(luò)開發(fā)視頻大講堂)
- JBoss:Developer's Guide
- 運(yùn)維前線:一線運(yùn)維專家的運(yùn)維方法、技巧與實(shí)踐
- R語言數(shù)據(jù)挖掘:實(shí)用項(xiàng)目解析
- Xamarin Cross-Platform Development Cookbook
- Visual Basic語言程序設(shè)計(jì)上機(jī)指導(dǎo)與練習(xí)(第3版)
- Three.js Essentials
- Android從入門到精通