官术网_书友最值得收藏!

Indexing and selecting data

In this section, we will focus on how to get, set, or slice subsets of Pandas data structure objects. As we learned in previous sections, Series or DataFrame objects have axis labeling information. This information can be used to identify items that we want to select or assign a new value to in the object:

>>> s4[['024', '002']] # selecting data of Series object
024 NaN
002 Mary
dtype: object
>>> s4[['024', '002']] = 'unknown' # assigning data
>>> s4
024 unknown
065 NaN
002 unknown
001 Nam
dtype: object

If the data object is a DataFrame structure, we can also proceed in a similar way:

>>> df5[['b', 'c']]
 b c
0 1 2
1 4 5
2 7 8

For label indexing on the rows of DataFrame, we use the ix function that enables us to select a set of rows and columns in the object. There are two parameters that we need to specify: the row and column labels that we want to get. By default, if we do not specify the selected column names, the function will return selected rows with all columns in the object:

>>> df5.ix[0]
a 0
b 1
c 2
Name: 0, dtype: int64
>>> df5.ix[0, 1:3]
b 1
c 2
Name: 0, dtype: int64

Moreover, we have many ways to select and edit data contained in a Pandas object. We summarize these functions in the following table:

Tip

Pandas data objects may contain duplicate indices. In this case, when we get or set a data value via index label, it will affect all rows or columns that have the same selected index name.

主站蜘蛛池模板: 开平市| 安阳市| 鹤壁市| 格尔木市| 娱乐| 安岳县| 米脂县| 台前县| 运城市| 大理市| 东源县| 扎鲁特旗| 琼中| 平顶山市| 永济市| 揭西县| 舟山市| 即墨市| 四子王旗| 宜城市| 虎林市| 建瓯市| 木兰县| 那曲县| 栖霞市| 深圳市| 昆明市| 汕头市| 垫江县| 寻甸| 龙山县| 阿克陶县| 双峰县| 商河县| 舟山市| 长葛市| 汉阴县| 曲沃县| 贵州省| 商城县| 海盐县|