官术网_书友最值得收藏!

Array functions

Many helpful array functions are supported in NumPy for analyzing data. We will list some part of them that are common in use. Firstly, the transposing function is another kind of reshaping form that returns a view on the original data array without copying anything:

>>> a = np.array([[0, 5, 10], [20, 25, 30]])
>>> a.reshape(3, 2)
array([[0, 5], [10, 20], [25, 30]])
>>> a.T
array([[0, 20], [5, 25], [10, 30]])

In general, we have the swapaxes method that takes a pair of axis numbers and returns a view on the data, without making a copy:

>>> a = np.array([[[0, 1, 2], [3, 4, 5]], 
 [[6, 7, 8], [9, 10, 11]]])
>>> a.swapaxes(1, 2)
array([[[0, 3],
 [1, 4],
 [2, 5]],
 [[6, 9],
 [7, 10],
 [8, 11]]])

The transposing function is used to do matrix computations; for example, computing the inner matrix product XT.X using np.dot:

>>> a = np.array([[1, 2, 3],[4,5,6]])
>>> np.dot(a.T, a)
array([[17, 22, 27],
 [22, 29, 36],
 [27, 36, 45]])

Sorting data in an array is also an important demand in processing data. Let's take a look at some sorting functions and their use:

>>> a = np.array ([[6, 34, 1, 6], [0, 5, 2, -1]])

>>> np.sort(a) # sort along the last axis
array([[1, 6, 6, 34], [-1, 0, 2, 5]])

>>> np.sort(a, axis=0) # sort along the first axis
array([[0, 5, 1, -1], [6, 34, 2, 6]])

>>> b = np.argsort(a) # fancy indexing of sorted array
>>> b
array([[2, 0, 3, 1], [3, 0, 2, 1]])
>>> a[0][b[0]]
array([1, 6, 6, 34])

>>> np.argmax(a) # get index of maximum element
1

See the following table for a listing of array functions:

主站蜘蛛池模板: 辉县市| 北海市| 元朗区| 临漳县| 中江县| 招远市| 福安市| 新安县| 定结县| 海兴县| 东平县| 靖安县| 宜章县| 南岸区| 崇仁县| 松阳县| 青铜峡市| 奇台县| 连云港市| 平凉市| 乐平市| 黄梅县| 南靖县| 准格尔旗| 阿瓦提县| 昆山市| 东乡| 双流县| 百色市| 达尔| 河北区| 礼泉县| 轮台县| 滨州市| 安丘市| 绥德县| 涟源市| 万山特区| 喜德县| 龙州县| 东至县|