- Mastering Machine Learning with R(Second Edition)
- Cory Lesmeister
- 75字
- 2021-07-09 18:23:59
Summary
In this chapter, we looked at using probabilistic linear models to predict a qualitative response with three methods: logistic regression, discriminant analysis, and MARS. Additionally, we began the process of using ROC charts in order to explore model selection visually and statistically. We also briefly discussed the model selection and trade-offs that you need to consider. In future chapters, we will revisit the breast cancer dataset to see how more complex techniques perform.
推薦閱讀
- Hands-On Data Structures and Algorithms with Rust
- 云計算環(huán)境下的信息資源集成與服務(wù)
- Mastering Ninject for Dependency Injection
- Visual Studio 2015 Cookbook(Second Edition)
- 企業(yè)大數(shù)據(jù)系統(tǒng)構(gòu)建實戰(zhàn):技術(shù)、架構(gòu)、實施與應(yīng)用
- 揭秘云計算與大數(shù)據(jù)
- Oracle高性能自動化運維
- 軟件成本度量國家標(biāo)準(zhǔn)實施指南:理論、方法與實踐
- 數(shù)據(jù)挖掘原理與SPSS Clementine應(yīng)用寶典
- Apache Kylin權(quán)威指南
- Hadoop大數(shù)據(jù)開發(fā)案例教程與項目實戰(zhàn)(在線實驗+在線自測)
- 淘寶、天貓電商數(shù)據(jù)分析與挖掘?qū)崙?zhàn)(第2版)
- Mastering LOB Development for Silverlight 5:A Case Study in Action
- Unity 2018 By Example(Second Edition)
- 大數(shù)據(jù)與機(jī)器學(xué)習(xí):實踐方法與行業(yè)案例