- Mastering Machine Learning with R(Second Edition)
- Cory Lesmeister
- 48字
- 2021-07-09 18:23:57
Modeling and evaluation
For this part of the process, we will start with a logistic regression model of all the input variables and then narrow down the features with the best subsets. After this, we will try our hand at discriminant analysis and Multivariate Adaptive Regression Splines (MARS).
推薦閱讀
- SQL Server 2012數(shù)據(jù)庫技術(shù)與應(yīng)用(微課版)
- 卷積神經(jīng)網(wǎng)絡(luò)的Python實現(xiàn)
- Mockito Cookbook
- 深入淺出 Hyperscan:高性能正則表達式算法原理與設(shè)計
- MySQL技術(shù)內(nèi)幕:SQL編程
- 爬蟲實戰(zhàn):從數(shù)據(jù)到產(chǎn)品
- 信息融合中估計算法的性能評估
- MySQL數(shù)據(jù)庫實用教程
- 數(shù)據(jù)應(yīng)用工程:方法論與實踐
- 數(shù)據(jù)中臺實戰(zhàn):手把手教你搭建數(shù)據(jù)中臺
- Unity for Architectural Visualization
- 數(shù)據(jù)迷霧:洞察數(shù)據(jù)的價值與內(nèi)涵
- Machine Learning for Mobile
- 數(shù)據(jù)產(chǎn)品經(jīng)理寶典:大數(shù)據(jù)時代如何創(chuàng)造卓越產(chǎn)品
- 網(wǎng)站數(shù)據(jù)挖掘與分析:系統(tǒng)方法與商業(yè)實踐