- Effective Amazon Machine Learning
- Alexis Perrier
- 131字
- 2021-07-03 00:17:53
Overview of an Amazon Machine Learning Workflow
This chapter offers an overview of the workflow of a simple Amazon Machine Learning (Amazon ML) project, which comprises three main phases:
- Preparing the data
- Training and selecting the model
- Making predictions
The reader will learn how to get started on the Amazon Machine Learning platform, how to set up an account, and how to secure it. In the second part, we go through a simple numeric prediction problem based on a classic dataset. We describe each of the three steps mentioned above, what happens, what to expect, and how to interpret the final result.
In this chapter, we will study the following:
- Opening an Amazon Web Services (AWS) account
- Setting up the account
- Overview of a standard Amazon Machine Learning workflow
推薦閱讀
- 企業數字化創新引擎:企業級PaaS平臺HZERO
- Mastering Ninject for Dependency Injection
- SQL Server 2012數據庫技術與應用(微課版)
- SQL Server 2008數據庫應用技術(第二版)
- 使用GitOps實現Kubernetes的持續部署:模式、流程及工具
- 揭秘云計算與大數據
- 智能數據時代:企業大數據戰略與實戰
- 辦公應用與計算思維案例教程
- 跨領域信息交換方法與技術(第二版)
- Spark分布式處理實戰
- Python數據分析從小白到專家
- 改變未來的九大算法
- 企業大數據處理:Spark、Druid、Flume與Kafka應用實踐
- 數據庫原理與設計實驗教程(MySQL版)
- MySQL性能調優與架構設計