- Effective Amazon Machine Learning
- Alexis Perrier
- 80字
- 2021-07-03 00:17:50
Dealing with messy data
As the dataset grows, so do inconsistencies and errors. Whether as a result of human error, system failure, or data structure evolutions, real-world data is rife with invalid, absurd, or missing values. Even when the dataset is spotless, the nature of some variables need to be adapted to the model. We look at the most common data anomalies and characteristics that need to be corrected in the context of Amazon ML linear models.
推薦閱讀
- 漫話大數據
- Unity 5.x Game AI Programming Cookbook
- 使用GitOps實現Kubernetes的持續部署:模式、流程及工具
- 企業大數據系統構建實戰:技術、架構、實施與應用
- 大數據:從概念到運營
- 大數據Hadoop 3.X分布式處理實戰
- Scratch 3.0 藝術進階
- SQL優化最佳實踐:構建高效率Oracle數據庫的方法與技巧
- “互聯網+”時代立體化計算機組
- Lego Mindstorms EV3 Essentials
- INSTANT Apple iBooks How-to
- 數據科學實戰指南
- Visual Studio 2013 and .NET 4.5 Expert Cookbook
- 二進制分析實戰
- Unity Game Development Blueprints