- Machine Learning with Spark(Second Edition)
- Rajdeep Dua Manpreet Singh Ghotra Nick Pentreath
- 112字
- 2021-07-09 21:07:52
Lagranges multipliers
In the math optimization problem, the method of Lagrange multipliers is used as a tool for finding the local minima and maxima of a function subject to equality constraints. An example involves finding the maximum entropy distribution subject to given constraints.
This is best explained with an example. Let's say we have to maximize K (x, y) = -x2 -y2 subject to y = x + 1.
The constraint function is g (x, y) = x-y+1=0. The L multiplier then becomes this:

Differentiating with respect to x, y, and lambda, and setting to 0 we get the following:



Solving the preceding equations, we get x=-0.5, y=0.5, lambda=-1.
推薦閱讀
- 大數(shù)據(jù)技術(shù)與應(yīng)用基礎(chǔ)
- Excel 2007函數(shù)與公式自學(xué)寶典
- Photoshop CS4經(jīng)典380例
- Effective DevOps with AWS
- 運(yùn)動(dòng)控制器與交流伺服系統(tǒng)的調(diào)試和應(yīng)用
- Windows Server 2008 R2活動(dòng)目錄內(nèi)幕
- Creating ELearning Games with Unity
- 計(jì)算機(jī)硬件技術(shù)基礎(chǔ)(第2版)
- C#編程兵書
- EDA技術(shù)及其創(chuàng)新實(shí)踐(Verilog HDL版)
- 互聯(lián)網(wǎng)單元測(cè)試及實(shí)踐
- Containerization with Ansible 2
- 數(shù)據(jù)庫(kù)技術(shù):Access 2003計(jì)算機(jī)網(wǎng)絡(luò)技術(shù)
- 數(shù)據(jù)庫(kù)技術(shù)及應(yīng)用
- 數(shù)字系統(tǒng)設(shè)計(jì)與Verilog HDL