- Machine Learning with Spark(Second Edition)
- Rajdeep Dua Manpreet Singh Ghotra Nick Pentreath
- 92字
- 2021-07-09 21:07:51
Prior, likelihood, and posterior
Bayes theorem states the following:
Posterior = Prior * Likelihood
This can also be stated as P (A | B) = (P (B | A) * P(A)) / P(B) , where P(A|B) is the probability of A given B, also called posterior.
Prior: Probability distribution representing knowledge or uncertainty of a data object prior or before observing it
Posterior: Conditional probability distribution representing what parameters are likely after observing the data object
Likelihood: The probability of falling under a specific category or class.
This is represented as follows:

推薦閱讀
- Word 2003、Excel 2003、PowerPoint 2003上機指導與練習
- Microsoft Power BI Quick Start Guide
- 面向STEM的mBlock智能機器人創新課程
- 錯覺:AI 如何通過數據挖掘誤導我們
- 數據庫系統原理及應用教程(第5版)
- 計算機網絡安全
- LMMS:A Complete Guide to Dance Music Production Beginner's Guide
- 網絡脆弱性掃描產品原理及應用
- 大數據案例精析
- Artificial Intelligence By Example
- 基于RPA技術財務機器人的應用與研究
- FANUC工業機器人配置與編程技術
- PowerPoint 2010幻燈片制作高手速成
- 從祖先到算法:加速進化的人類文化
- R Statistics Cookbook