官术网_书友最值得收藏!

Prior, likelihood, and posterior

Bayes theorem states the following:

Posterior = Prior * Likelihood

This can also be stated as P (A | B) = (P (B | A) * P(A)) / P(B) , where P(A|B) is the probability of A given B, also called posterior.

Prior: Probability distribution representing knowledge or uncertainty of a data object prior or before observing it

Posterior: Conditional probability distribution representing what parameters are likely after observing the data object

Likelihood: The probability of falling under a specific category or class.

This is represented as follows:

主站蜘蛛池模板: 阿坝县| 洛宁县| 灯塔市| 思南县| 团风县| 济宁市| 岫岩| 汶川县| 南阳市| 呼伦贝尔市| 青岛市| 芮城县| 萨迦县| 漯河市| 深圳市| 兴海县| 桦甸市| 梅州市| 松江区| 东光县| 博爱县| 盈江县| 方正县| 莲花县| 浦城县| 成武县| 萨嘎县| 清新县| 平乐县| 莱芜市| 漯河市| 金华市| 嘉祥县| 同江市| 宜都市| 衡水市| 武威市| 独山县| 新龙县| 荆门市| 翁牛特旗|