- Python Machine Learning By Example
- Yuxi (Hayden) Liu
- 106字
- 2021-07-02 22:57:19
Binning
Sometimes it's useful to separate feature values into several bins. For example, we may be only interested whether it rained on a particular day. Given the precipitation values, we can binarize the values, so that we get a true value if the precipitation value is not zero, and a false value otherwise. We can also use statistics to divide values into high, low, and medium bins.
The binning process inevitably leads to loss of information. However, depending on your goals this may not be an issue, and actually reduce the chance of overfitting. Certainly there will be improvements in speed and memory or storage requirements.
推薦閱讀
- JavaScript+jQuery網頁特效設計任務驅動教程(第2版)
- C語言程序設計
- C語言程序設計
- 批調度與網絡問題的組合算法
- C++從入門到精通(第5版)
- 玩轉.NET Micro Framework移植:基于STM32F10x處理器
- 嵌入式C編程實戰
- Python數據預處理技術與實踐
- Magento 2 Developer's Guide
- 軟件再工程:優化現有軟件系統的方法與最佳實踐
- Serverless從入門到進階:架構、原理與實踐
- Oracle API Management 12c Implementation
- Learning RxJava
- Mastering VMware Horizon 6
- Java無難事:詳解Java編程核心思想與技術(第2版)