- Machine Learning for OpenCV
- Michael Beyeler
- 116字
- 2021-07-02 19:47:25
Inspecting the data
Before you get started with setting up a model, it is always a good idea to have a look at the data. We did this earlier for the town map example, so let's continue our streak. Using Matplotlib, we create a scatter plot where the color of each data point corresponds to the class label:
In [10]: plt.scatter(data[:, 0], data[:, 1], c=target,
cmap=plt.cm.Paired, s=100)
... plt.xlabel(iris.feature_names[0])
... plt.ylabel(iris.feature_names[1])
Out[10]: <matplotlib.text.Text at 0x23bb5e03eb8>
To make plotting easier, we limit ourselves to the first two features (iris.feature_names[0] being the sepal length and iris.feature_names[1] being the sepal width). We can see a nice separation of classes in the following figure:

Plotting the first two features of the Iris dataset
推薦閱讀
- Data Visualization with D3 4.x Cookbook(Second Edition)
- Practical Data Analysis Cookbook
- C語言程序設(shè)計(jì)教程
- MATLAB 2020 從入門到精通
- Django:Web Development with Python
- 信息安全技術(shù)
- Python機(jī)器學(xué)習(xí)經(jīng)典實(shí)例
- HDInsight Essentials(Second Edition)
- 深入淺出PostgreSQL
- 批調(diào)度與網(wǎng)絡(luò)問題的組合算法
- 人工智能算法(卷1):基礎(chǔ)算法
- Python程序設(shè)計(jì)開發(fā)寶典
- UML軟件建模
- 征服C指針(第2版)
- Web前端測試與集成:Jasmine/Selenium/Protractor/Jenkins的最佳實(shí)踐