官术网_书友最值得收藏!

Loading the training data

The Iris dataset is included with scikit-learn. We first load all the necessary modules, as we did in our earlier examples:

In [1]: import numpy as np
... import cv2
... from sklearn import datasets
... from sklearn import model_selection
... from sklearn import metrics
... import matplotlib.pyplot as plt
... %matplotlib inline
In [2]: plt.style.use('ggplot')

Then, loading the dataset is a one-liner:

In [3]: iris = datasets.load_iris()

This function returns a dictionary we call iris, which contains a bunch of different fields:

In [4]: dir(iris)
Out[4]: ['DESCR', 'data', 'feature_names', 'target', 'target_names']

Here, all the data points are contained in 'data'. There are 150 data points, each of which have four feature values:

In [5]: iris.data.shape
Out[5]: (150, 4)

These four features correspond to the sepal and petal dimensions mentioned earlier:

In [6]: iris.feature_names
Out[6]: ['sepal length (cm)',
'sepal width (cm)',
'petal length (cm)',
'petal width (cm)']

For every data point, we have a class label stored in target:

In [7]: iris.target.shape
Out[7]: (150,)

We can also inspect the class labels, and find that there is a total of three classes:

In [8]: np.unique(iris.target)
Out[8]: array([0, 1, 2])
主站蜘蛛池模板: 浮山县| 寻乌县| 马关县| 伊川县| 息烽县| 大方县| 威远县| 磐安县| 固安县| 科尔| 祁门县| 桐梓县| 长寿区| 胶州市| 韩城市| 长治市| 海安县| 新昌县| 镇康县| 双江| 南开区| 板桥市| 商南县| 方山县| 尼木县| 湖南省| 舒城县| 乌兰浩特市| 南宁市| 东山县| 基隆市| 大冶市| 乌海市| 深圳市| 台北市| 奉贤区| 上杭县| 古蔺县| 连山| 镇平县| 登封市|