官术网_书友最值得收藏!

Loading the training data

The Iris dataset is included with scikit-learn. We first load all the necessary modules, as we did in our earlier examples:

In [1]: import numpy as np
... import cv2
... from sklearn import datasets
... from sklearn import model_selection
... from sklearn import metrics
... import matplotlib.pyplot as plt
... %matplotlib inline
In [2]: plt.style.use('ggplot')

Then, loading the dataset is a one-liner:

In [3]: iris = datasets.load_iris()

This function returns a dictionary we call iris, which contains a bunch of different fields:

In [4]: dir(iris)
Out[4]: ['DESCR', 'data', 'feature_names', 'target', 'target_names']

Here, all the data points are contained in 'data'. There are 150 data points, each of which have four feature values:

In [5]: iris.data.shape
Out[5]: (150, 4)

These four features correspond to the sepal and petal dimensions mentioned earlier:

In [6]: iris.feature_names
Out[6]: ['sepal length (cm)',
'sepal width (cm)',
'petal length (cm)',
'petal width (cm)']

For every data point, we have a class label stored in target:

In [7]: iris.target.shape
Out[7]: (150,)

We can also inspect the class labels, and find that there is a total of three classes:

In [8]: np.unique(iris.target)
Out[8]: array([0, 1, 2])
主站蜘蛛池模板: 晋宁县| 巨野县| 德化县| 彭阳县| 佛坪县| 北碚区| 肇东市| 巴里| 辽中县| 宁陕县| 峡江县| 镇坪县| 门头沟区| 南部县| 逊克县| 云南省| 依安县| 旬阳县| 宜阳县| 西昌市| 襄垣县| 昌邑市| 泾源县| 左权县| 合川市| 金堂县| 肥城市| 广丰县| 肇州县| 土默特右旗| 加查县| 温泉县| 安国市| 扎兰屯市| 铜川市| 高台县| 景宁| 大竹县| 信丰县| 开远市| 南雄市|