官术网_书友最值得收藏!

Regularization parameters in linear regression and ridge/lasso regression

Adjusted R-squared in linear regression always penalizes, adding extra variables with less significance is one type of regularizing the data in linear regression, but it will adjust to the unique fit of the model. Whereas, in machine learning, many parameters are adjusted to regularize the overfitting problem. In the example of lasso/ridge regression penalty parameter (λ) adjusted to regularization, there are infinite values that can be applied to regularize the model in infinite ways:

Overall, there are many similarities between the statistical way and machine learning way of predicting the pattern.

主站蜘蛛池模板: 上饶市| 泸溪县| 增城市| 崇阳县| 托里县| 嵊州市| 宁强县| 青阳县| 横峰县| 青州市| 盐源县| 阿荣旗| 望奎县| 错那县| 五寨县| 奉贤区| 牙克石市| 余姚市| 十堰市| 盐边县| 申扎县| 天水市| 横山县| 葫芦岛市| 嘉祥县| 济宁市| 山西省| 海伦市| 迁西县| 岳池县| 扎鲁特旗| 哈巴河县| 日喀则市| 双峰县| 政和县| 互助| 岳池县| 杭锦后旗| 磐安县| 桃源县| 阜城县|