- Machine Learning Algorithms
- Giuseppe Bonaccorso
- 108字
- 2021-07-02 18:53:32
Linear models
Consider a dataset of real-values vectors:

Each input vector is associated with a real value yi:

A linear model is based on the assumption that it's possible to approximate the output values through a regression process based on the rule:

In other words, the strong assumption is that our dataset and all other unknown points lie on a hyperplane and the maximum error is proportional to both the training quality and the adaptability of the original dataset. One of the most common problems arises when the dataset is clearly non-linear and other models have to be considered (such as neural networks or kernel support vector machines).
推薦閱讀
- 計(jì)算機(jī)網(wǎng)絡(luò)
- 少兒人工智能趣味入門(mén):Scratch 3.0動(dòng)畫(huà)與游戲編程
- Python量化投資指南:基礎(chǔ)、數(shù)據(jù)與實(shí)戰(zhàn)
- Hands-On Machine Learning with scikit:learn and Scientific Python Toolkits
- INSTANT MinGW Starter
- Python爬蟲(chóng)開(kāi)發(fā)與項(xiàng)目實(shí)戰(zhàn)
- Microsoft Dynamics GP 2013 Reporting, Second Edition
- 名師講壇:Java微服務(wù)架構(gòu)實(shí)戰(zhàn)(SpringBoot+SpringCloud+Docker+RabbitMQ)
- Bootstrap 4 Cookbook
- PLC應(yīng)用技術(shù)(三菱FX2N系列)
- Java SE實(shí)踐教程
- Visual Basic 6.0程序設(shè)計(jì)實(shí)驗(yàn)教程
- C++ Fundamentals
- Flask Web開(kāi)發(fā):基于Python的Web應(yīng)用開(kāi)發(fā)實(shí)戰(zhàn)(第2版)
- Mastering Android Studio 3