- Machine Learning Algorithms
- Giuseppe Bonaccorso
- 111字
- 2021-07-02 18:53:21
What you need for this book
There are no particular mathematical prerequisites; however, to fully understand all the algorithms, it's important to have a basic knowledge of linear algebra, probability theory, and calculus.
All practical examples are written in Python and use the scikit-learn machine learning framework, Natural Language Toolkit (NLTK), Crab, langdetect, Spark, gensim, and TensorFlow (deep learning framework). These are available for Linux, Mac OS X, and Windows, with Python 2.7 and 3.3+. When a particular framework is employed for a specific task, detailed instructions and references will be provided.
scikit-learn, NLTK, and TensorFlow can be installed by following the instructions provided on these websites: http://scikit-learn.org, http://www.nltk.org, and https://www.tensorflow.org.
推薦閱讀
- Implementing Modern DevOps
- 嵌入式軟件系統測試:基于形式化方法的自動化測試解決方案
- ASP.NET Core 5.0開發入門與實戰
- 劍指Offer(專項突破版):數據結構與算法名企面試題精講
- 深入理解Django:框架內幕與實現原理
- Visual Basic程序設計(第3版):學習指導與練習
- Mastering C# Concurrency
- TradeStation交易應用實踐:量化方法構建贏家策略(原書第2版)
- Julia高性能科學計算(第2版)
- SQL Server與JSP動態網站開發
- Unity 2018 Augmented Reality Projects
- 區塊鏈項目開發指南
- HTML5+CSS3+jQuery Mobile APP與移動網站設計從入門到精通
- Python大規模機器學習
- Penetration Testing with the Bash shell