官术网_书友最值得收藏!

Processing JSON files

JavaScript Object Notation (JSON) is a data interchange format developed by the JavaScript ecosystem. It is a text-based format and has the same expressiveness such as, for instance, XML. The following example uses the SparkSession method called read.json to load the HDFS-based JSON data file named adult.json. This uses the so-called Apache Spark DataSource API to read and parse JSON files, but we will come back to that later.

val dframe = spark.read.json("hdfs:///data/spark/adult.json")

The result is a DataFrame.

Data can be saved in the JSON format using the DataSource API as well, as shown by the following example:

import spark.implicits._
val df = sc.parallelize(Array(1,2,3)).toDF
df.write.json("hdfs://localhost:9000/tmp/test.json")

So, the resulting data can be seen on HDFS; the Hadoop filesystem ls command shows you that the data resides in the target directory as a success file and eight part files. This is because even though small, the underlying RDD was set to have eight partitions, therefore those eight partitions have been written. This is shown in the following image:

What if we want to obtain a single file? This can be accomplished by repartition to a single partition:

val df1 =df.repartition(1)
df1.write.json("hdfs://localhost:9000/tmp/test_single_partition.json")

If we now have a look at the folder, it is a single file:

There are two important things to know. First, we still get the file wrapped in a subfolder, but this is not a problem as HDFS treats folders equal to files and as long as the containing files stick to the same format, there is no problem. So, if you refer to /tmp/test_single_partition.json, which is a folder, you can also use it similarly to a single file.

In addition, all files starting with _ are ignored. This brings us to the second point, the _SUCCESS file. This is a framework-independent way to tell users of that file that the job writing this file (or folder respectively) has been successfully completed. Using the Hadoop filesystem's cat command, it is possible to display the contents of the JSON data:

If you want to dive more into partitioning and what it means when using it in conjunction with HDFS, it is recommended that you start with the following discussion thread on StackOverflow:
http://stackoverflow.com/questions/10666488/what-are-success-and-part-r-00000-files-in-hadoop.

Processing Parquet data is very similar, as we will see next.

主站蜘蛛池模板: 沁阳市| 同心县| 固镇县| 嘉祥县| 赞皇县| 台山市| 汉沽区| 高唐县| 阿瓦提县| 江陵县| 哈巴河县| 利辛县| 察雅县| 五常市| 宁德市| 潮州市| 林芝县| 阳春市| 思南县| 彭山县| 昂仁县| 东城区| 秦安县| 融水| 玉龙| 康定县| 贺州市| 蓝山县| 临清市| 庆安县| 牟定县| 炉霍县| 明光市| 五大连池市| 镇平县| 六安市| 台州市| 高雄县| 潞西市| 静乐县| 日喀则市|