官术网_书友最值得收藏!

  • Deep Learning with Theano
  • Christopher Bourez
  • 189字
  • 2021-07-15 17:17:00

Single-layer linear model

The simplest model is the linear model, where for each class c, the output is a linear combination of the input values:

This output is unbounded.

To get a probability distribution, pi, that sums to 1, the output of the linear model is passed into a softmax function:

Hence, the estimated probability of class c for an input x is rewritten with vectors:

Translated in Python with:

batch_size = 600
n_in = 28 * 28
n_out = 10

x = T.matrix('x')
y = T.ivector('y')
W = theano.shared(
            value=numpy.zeros(
                (n_in, n_out),
                dtype=theano.config.floatX
            ),
            name='W',
            borrow=True
        )
b = theano.shared(
    value=numpy.zeros(
        (n_out,),
        dtype=theano.config.floatX
    ),
    name='b',
    borrow=True
)
model = T.nnet.softmax(T.dot(x, W) + b)

The prediction for a given input is given by the most probable class (maximum probability):

y_pred = T.argmax(model, axis=1)

In this model with a single linear layer, information moves from input to output: it is a feedforward network. The process to compute the output given the input is called forward propagation.

This layer is said fully connected because all outputs,

, are the sum of (are linked to) all inputs values through a multiplicative coefficient:

主站蜘蛛池模板: 七台河市| 滨海县| 双峰县| 定远县| 弥勒县| 织金县| 滁州市| 乐业县| 正定县| 朝阳区| 察哈| 隆德县| 碌曲县| 四平市| 社旗县| 收藏| 永城市| 庆安县| 邢台市| 河间市| 综艺| 天柱县| 诸城市| 仪陇县| 自贡市| 金秀| 昌江| 崇明县| 华宁县| 普兰店市| 平阴县| 吉隆县| 酒泉市| 屏东县| 酒泉市| 宜阳县| 含山县| 恩平市| 东莞市| 桐乡市| 巴里|