- R Deep Learning Cookbook
- Dr. PKS Prakash Achyutuni Sri Krishna Rao
- 121字
- 2021-07-02 20:49:17
Convolution Neural Network
In this chapter, we will cover the following topics:
- Downloading and configuring an image dataset
- Learning the architecture of a CNN classifier
- Using functions to initialize weights and biases
- Using functions to create a new convolution layer
- Using functions to flatten the densely connected layer
- Defining placeholder variables
- Creating the first convolution layer
- Creating the second convolution layer
- Flattening the second convolution layer
- Creating the first fully connected layer
- Applying dropout to the first fully connected layer
- Creating the second fully connected layer with dropout
- Applying softmax activation to obtain a predicted class
- Defining the cost function used for optimization
- Performing gradient descent cost optimization
- Executing the graph in a TensorFlow session
- Evaluating the performance on test data
推薦閱讀
- 自己動手實現Lua:虛擬機、編譯器和標準庫
- Python for Secret Agents:Volume II
- Instant Zepto.js
- TypeScript項目開發實戰
- Natural Language Processing with Java and LingPipe Cookbook
- Mobile Device Exploitation Cookbook
- 用案例學Java Web整合開發
- Java 11 and 12:New Features
- Java EE實用教程
- Serverless工程實踐:從入門到進階
- Scratch超人漫游記:創意程序設計:STEAM創新教育指南
- MonoTouch應用開發實踐指南:使用C#和.NET開發iOS應用
- Cocos2D Game Development Essentials
- HTML5 Boilerplate Web Development
- iOS應用逆向工程:分析與實戰