官术网_书友最值得收藏!

How it works...

The performance of the model can be evaluated using AUC:

# Performance on Train
library(pROC)
ypred <- sess$run(tf$nn$sigmoid(multilayer_perceptron(x, weights, biases)))
roc_obj <- roc(occupancy_train[, yFeatures], as.numeric(ypred))

# Performance on Test
nRowt<-nrow(occupancy_test)
xt <- tf$constant(unlist(occupancy_test[, xFeatures]), shape=c(nRowt, nFeatures), dtype=np$float32) #
ypredt <- sess$run(tf$nn$sigmoid(multilayer_perceptron(xt, weights, biases)))
roc_objt <- roc(occupancy_test[, yFeatures], as.numeric(ypredt))

AUC can be visualized using the plot.auc function from the pROC package, as shown in the image following the next command. The performance of train and test (hold out) is very similar.

plot.roc(roc_obj, col = "green", lty=2, lwd=2)
plot.roc(roc_objt, add=T, col="red", lty=4, lwd=2)
Performance of multilayer perceptron using TensorFlow
主站蜘蛛池模板: 肥城市| 西安市| 昆明市| 中江县| 尉氏县| 梨树县| 望谟县| 临猗县| 平舆县| 呼图壁县| 汝南县| 盈江县| 高尔夫| 乳山市| 洛扎县| 秦安县| 新丰县| 永善县| 杭锦旗| 上犹县| 克什克腾旗| 盐亭县| 丽江市| 仁怀市| 会宁县| 万全县| 新河县| 华亭县| 汝城县| 淮安市| 遂昌县| 临汾市| 封开县| 丰城市| 泽州县| 若羌县| 禄丰县| 韶山市| 金寨县| 嘉兴市| 阿克苏市|