- R Deep Learning Cookbook
- Dr. PKS Prakash Achyutuni Sri Krishna Rao
- 58字
- 2021-07-02 20:49:16
How it works...
Now, let's assess the performance of the model on train and test datasets. The AUC on the train data is 0.978 and on the test data is 0.982:
# Train accuracy (AUC)
> train_pred <- predict(model.nn,occupancy_train.x)
> train_yhat <- max.col(t(train_pred))-1
> roc_obj <- pROC::roc(c(occupancy_train.y), c(train_yhat))
> pROC::auc(roc_obj)
Area under the curve: 0.9786
#Test accuracy (AUC)
> test_pred <- predict(nnmodel,occupancy_test.x)
> test_yhat <- max.col(t(test_pred))-1
> roc_obj <- pROC::roc(c(occupancy_test.y), c(test_yhat))
> pROC::auc(roc_obj)
Area under the curve: 0.9824
推薦閱讀
- Visual Basic .NET程序設計(第3版)
- Microsoft Application Virtualization Cookbook
- DevOps入門與實踐
- 基于Java技術的Web應用開發
- Java程序員面試算法寶典
- 機器人Python青少年編程開發實例
- 精通軟件性能測試與LoadRunner實戰(第2版)
- C/C++常用算法手冊(第3版)
- Node.js Design Patterns
- C語言程序設計實驗指導 (第2版)
- 機器學習與R語言實戰
- Instant Apache Camel Messaging System
- SFML Game Development
- Swift Essentials(Second Edition)
- Mastering Magento Theme Design