官术网_书友最值得收藏!

  • R Deep Learning Cookbook
  • Dr. PKS Prakash Achyutuni Sri Krishna Rao
  • 137字
  • 2021-07-02 20:49:15

How it works...

The following is the performance of the grid-searched model on both the training and cross-validation datasets. We can observe that the AUC has increased by one unit in both training and cross-validation scenarios, after performing a grid search. The training and cross validation AUC after the grid search is 0.996 and 0.997 respectively.

# Performance on Training data after grid search
> train_performance.grid <- h2o.performance(best_dl_model,train = T)
> train_performance.grid@metrics$AUC
[1] 0.9965881

# Performance on Cross validation data after grid search
> xval_performance.grid <- h2o.performance(best_dl_model,xval = T)
> xval_performance.grid@metrics$AUC
[1] 0.9979131

Now, let's assess the performance of the best grid-searched model on the test dataset. We can observe that the AUC has increased by 0.25 units after performing the grid search. The AUC on the test data is 0.993.

# Predict the outcome on test dataset
yhat <- h2o.predict(best_dl_model, occupancy_test.hex)

# Performance of the best grid-searched model on the Test dataset
> yhat$pmax <- pmax(yhat$p0, yhat$p1, na.rm = TRUE)
> roc_obj <- pROC::roc(c(as.matrix(occupancy_test.hex$Occupancy)), c(as.matrix(yhat$pmax)))
> pROC::auc(roc_obj)
Area under the curve: 0.9932
主站蜘蛛池模板: 赫章县| 南郑县| 松阳县| 斗六市| 余庆县| 西藏| 扶沟县| 渭源县| 广饶县| 印江| 泰和县| 文成县| 黑水县| 东光县| 灌云县| 焦作市| 西林县| 阿拉善右旗| 宜春市| 全南县| 洪泽县| 灵丘县| 巴彦淖尔市| 新乡县| 昌邑市| 定南县| 东丰县| 温宿县| 晴隆县| 泰顺县| 通州区| 专栏| 兰溪市| 吉木乃县| 新建县| 邢台市| 中卫市| 苍溪县| 莆田市| 延吉市| 鸡泽县|