官术网_书友最值得收藏!

How it works...

The performance of the model can be assessed using many metrics such as accuracy, Area under curve (AUC), misclassification error (%), misclassification error count, F1-score, precision, recall, specificity, and so on. However, in this chapter, the assessment of model performance is based on AUC.

The following is the training and cross validation accuracy of the trained model:

# Training accuracy (AUC)
> occupancy_train.glm@model$training_metrics@metrics$AUC
[1] 0.994583

# Cross validation accuracy (AUC)
> occupancy_train.glm@model$cross_validation_metrics@metrics$AUC
[1] 0.9945057

Now, let's assess the performance of the model on test data. The following code helps in predicting the outcome of the test data:

# Predict on test data
yhat <- h2o.predict(occupancy_train.glm, occupancy_test.hex)

Then, evaluate the AUC value based on the actual test outcome as follows:

# Test accuracy (AUC)
> yhat$pmax <- pmax(yhat$p0, yhat$p1, na.rm = TRUE)
> roc_obj <- pROC::roc(c(as.matrix(occupancy_test.hex$Occupancy)),
c(as.matrix(yhat$pmax)))
> auc(roc_obj)
Area under the curve: 0.9915

In H2O, one can also compute variable importance from the GLM model, as shown in the figure following this command:

#compute variable importance and performance
h2o.varimp_plot(occupancy_train.glm, num_of_features = 5)
Variable importance using H2O
主站蜘蛛池模板: 永靖县| 西安市| 平湖市| 莱州市| 泰来县| 久治县| 达拉特旗| 崇州市| 行唐县| 偏关县| 洞口县| 富蕴县| 石楼县| 象州县| 汽车| 封丘县| 乌什县| 勃利县| 霞浦县| 广昌县| 新乡市| 芦山县| 合作市| 寿阳县| 道孚县| 定襄县| 黄大仙区| 河西区| 林芝县| 蒲江县| 潮安县| 封丘县| 磐安县| 华安县| 富川| 错那县| 兴安县| 汤原县| 思茅市| 兰州市| 湘潭市|