官术网_书友最值得收藏!

Tracking the objects using a weak_ptr pointer

We have discussed the shared_ptr in the preceding section. The pointer is actually a little bit fat pointer. It logically points to two objects, the object being managed and the pointing counter using the use_count() method. Every shared_ptr basically has a strong reference count that prevents the object from being deleted and a weak reference count that does not prevent the object being deleted if the shared_ptr object's use count reaches 0, although we don't even use the weak reference count. For this reason, we can use only one reference count so we can use the weak_ptr pointer. The weak_ptr pointer refers to an object that is managed by shared_ptr. The advantage of weak_ptr is that it can be used to refer to an object, but we can only access it if the object still exists and without preventing the object from being deleted by some other reference holder if the strong reference count reaches zero. It is useful when we deal with data structures. Let's take a look at the following block of code to analyze the use of weak_ptr:

    /* weak_ptr_1.cpp */
#include <memory>
#include <iostream>

using namespace std;

auto main() -> int
{
cout << "[weak_ptr_1.cpp]" << endl;

auto sp = make_shared<int>(1234);

auto wp = weak_ptr<int>{ sp };

if(wp.expired())
cout << "wp is expired" << endl;
else
cout << "wp is not expired" << endl;
cout << "wp pointing counter = " << wp.use_count() << endl;
if(auto locked = wp.lock())
cout << "wp is locked. Value = " << *locked << endl;
else
{
cout << "wp is unlocked" << endl;
wp.reset();
}
cout << endl;

sp = nullptr;

if(wp.expired())
cout << "wp is expired" << endl;
else
cout << "wp is not expired" << endl;
cout << "wp pointing counter = " << wp.use_count() << endl;
if(auto locked = wp.lock())
cout << "wp is locked. Value = " << *locked << endl;
else
{
cout << "wp is unlocked" << endl;
wp.reset();
}
cout << endl;

return 0;
}

Before we analyze the preceding code, let's take a look at the following screenshot from the output console if we run the code:

At first, we instantiate shared_ptr and, as we discussed previously, the weak_ptr points to the object managed by shared_ptr. We then assign wp to the shared_ptr variable, sp. After we have a weak_ptr pointer, we then check its behavior. By calling the expired() method, we can figure out whether the referenced object was already deleted. And, since the wp variable is just constructed, it is not expired yet. The weak_ptr pointer also holds the value of the object counting by calling the use_count() method, as we used in shared_ptr. We then invoke the locked() method to create a shared_ptr that manages the referenced object and finds the value weak_ptr is pointing at. We now have a shared_ptr variable pointing to the address that holds the 1234 value.

We reset sp to nullptr afterward. Although we don't touch the weak_ptr pointer, it is also changed. As we can see from the console screenshot, now wp is expired since the object has been deleted. The counter also changes and becomes 0 since it points to nothing. Moreover, it is unlocked since the shared_ptr object has been deleted.

主站蜘蛛池模板: 海原县| 黄梅县| 麻城市| 凤庆县| 大同县| 台州市| 鹰潭市| 兴安盟| 阳春市| 湘乡市| 讷河市| 宁城县| 晋城| 邛崃市| 安福县| 安国市| 浮山县| 霍山县| 南江县| 阿勒泰市| 汝南县| 贡觉县| 东台市| 涪陵区| 江孜县| 安岳县| 永兴县| 赤壁市| 五大连池市| 葵青区| 潞西市| 凤台县| 延吉市| 沁阳市| 江华| 乌拉特后旗| 屏东市| 伊宁市| 泾源县| 遂溪县| 克东县|