官术网_书友最值得收藏!

Statistics and Machine Learning Toolbox

The Statistics and Machine Learning Toolbox contains all the tools necessary to extract knowledge from large datasets. It provides functions and apps to analyze, describe, and model data. Starting exploratory data analysis becomes a breeze with the descriptive statistics and graphs contained in the toolbox. Furthermore, fitting probability distributions to data, generating random numbers, and performing hypothesis tests will be extremely easy. Finally through the regression and classification algorithms, we can draw inferences from data and build predictive models.

For data mining, the Statistics and Machine Learning Toolbox offers feature selection, stepwise regression, Principal Component Analysis (PCA), regularization, and other dimensionality reduction methods that allow the identification of variables or functions that impact your model.

In this toolbox are developed supervised and unsupervised machine learning algorithms, including Support Vector Machines (SVMs), decision trees, k-Nearest Neighbor (KNN), k-means, k-medoids, hierarchical clustering, Gaussian Mixture Models (GMM), and hidden Markov models (HMM). Through the use of such algorithms, calculations on datasets that are too large to be stored in memory can be correctly executed. In the following screenshot, product capabilities of the Statistics and Machine Learning Toolbox are shown, extracted from the MathWorks site:

Figure 1.14: Product capabilities of the Statistics and Machine Learning Toolbox

Here is a descriptive list of the key features of this tool; you will find the main topics of the machine learning field:

  • Regression techniques, including linear, generalized linear, nonlinear, robust, regularized, ANOVA, repeated measures, and mixed-effects models
  • Big data algorithms for dimension reduction, descriptive statistics, k-means clustering, linear regression, logistic regression, and discriminant analysis
  • Univariate and multivariate probability distributions, random and quasi-random number generators, and Markov chain samplers
  • Hypothesis tests for distributions, dispersion, and location; Design of Experiments (DOE) techniques for optimal, factorial, and response surface designs
  • Classification Learner app and algorithms for supervised machine learning, including SVMs, boosted and bagged decision trees, KNN, Naive Bayes, discriminant analysis, and Gaussian process regression
  • Unsupervised machine learning algorithms, including k-means, k-medoids, hierarchical clustering, Gaussian mixtures, and HMMs
  • Bayesian optimization for tuning machine learning algorithms by searching for optimal hyperparameters

The following are the product resources of the Statistics and Machine Learning Toolbox:

Figure 1.15: Product resources of the Statistics and Machine Learning Toolbox

For a more comprehensive overview of the Statistics and Machine Learning Toolbox's capabilities, you can connect to the manufacturer's website at the following link:  https://www.mathworks.com/products/statistics.html.

主站蜘蛛池模板: 乐东| 霍山县| 光山县| 胶南市| 桂东县| 勃利县| 贵港市| 铜鼓县| 习水县| 宁武县| 平邑县| 合作市| 东港市| 遂溪县| 江达县| 涟水县| 东兴市| 盖州市| 济南市| 渝中区| 阆中市| 喜德县| 华坪县| 米林县| 成都市| 汕头市| 舞钢市| 江陵县| 池州市| 蕉岭县| 新泰市| 连江县| 富锦市| 湟中县| 巴塘县| 临夏县| 广河县| 隆回县| 梨树县| 日土县| 东海县|