- Learning Spark SQL
- Aurobindo Sarkar
- 92字
- 2021-07-02 18:23:45
Summary
In this chapter, we demonstrated using Spark with various data sources and data formats. We used Spark to work with a relational database (MySQL), NoSQL database (MongoDB), semistructured data (JSON), and data storage formats commonly used in the Hadoop ecosystem (Avro and Parquet). This sets you up very nicely for the more advanced Spark application-oriented chapters to follow.
In the next chapter, we will shift our focus from the mechanics of working with Spark to how Spark SQL can be used to explore data, perform data quality checks, and visualize data.
推薦閱讀
- 演進(jìn)式架構(gòu)(原書第2版)
- 編寫整潔的Python代碼(第2版)
- Java性能權(quán)威指南(第2版)
- 自然語言處理Python進(jìn)階
- JavaCAPS基礎(chǔ)、應(yīng)用與案例
- 速學(xué)Python:程序設(shè)計從入門到進(jìn)階
- Geospatial Development By Example with Python
- Canvas Cookbook
- QPanda量子計算編程
- Scratch從入門到精通
- Web編程基礎(chǔ):HTML5、CSS3、JavaScript(第2版)
- 自己動手構(gòu)建編程語言:如何設(shè)計編譯器、解釋器和DSL
- Jakarta EE Cookbook
- Design Patterns and Best Practices in Java
- Learning Dynamics NAV Patterns