- Neural Networks with R
- Giuseppe Ciaburro Balaji Venkateswaran
- 94字
- 2021-08-20 10:25:17
Unit step activation function
A unit step activation function is a much-used feature in neural networks. The output assumes value 0 for negative argument and 1 for positive argument. The function is as follows:

The range is between (0,1) and the output is binary in nature. These types of activation functions are useful for binary schemes. When we want to classify an input model in one of two groups, we can use a binary compiler with a unit step activation function. A unit step activation function is shown in the following figure:

推薦閱讀
- scikit-learn Cookbook
- Reporting with Visual Studio and Crystal Reports
- Game Programming Using Qt Beginner's Guide
- 深入淺出Electron:原理、工程與實(shí)踐
- CentOS 7 Server Deployment Cookbook
- 深入淺出Spring Boot 2.x
- oreilly精品圖書:軟件開發(fā)者路線圖叢書(共8冊)
- Windows Presentation Foundation Development Cookbook
- 零基礎(chǔ)學(xué)Java程序設(shè)計(jì)
- Hands-On RESTful Web Services with Go
- 人人都懂設(shè)計(jì)模式:從生活中領(lǐng)悟設(shè)計(jì)模式(Python實(shí)現(xiàn))
- 軟件項(xiàng)目管理實(shí)用教程
- Web前端應(yīng)用開發(fā)技術(shù)
- 遠(yuǎn)方:兩位持續(xù)創(chuàng)業(yè)者的點(diǎn)滴思考
- Scala Functional Programming Patterns