- Python Deep Learning Cookbook
- Indra den Bakker
- 64字
- 2021-07-02 15:43:13
Feed-Forward Neural Networks
In this chapter, we will implement Feed-Forward Neural Networks (FNN) and discuss the building blocks for deep learning:
- Understanding the perceptron
- Implementing a single-layer neural network
- Building a multi-layer neural network
- Getting started with activation functions
- Hidden layers and hidden units
- Implementing an autoencoder
- Tuning the loss function
- Experimenting with different optimizers
- Improving generalization with regularization
- Adding dropout to prevent overfitting
推薦閱讀
- Boost C++ Application Development Cookbook(Second Edition)
- 單片機C語言程序設(shè)計實訓(xùn)100例:基于STC8051+Proteus仿真與實戰(zhàn)
- C++ Builder 6.0下OpenGL編程技術(shù)
- C/C++算法從菜鳥到達(dá)人
- ASP.NET Core 2 and Vue.js
- Building Mapping Applications with QGIS
- C#程序設(shè)計
- Test-Driven Development with Django
- 零基礎(chǔ)學(xué)Kotlin之Android項目開發(fā)實戰(zhàn)
- 搞定J2EE:Struts+Spring+Hibernate整合詳解與典型案例
- Hadoop 2.X HDFS源碼剖析
- jQuery for Designers Beginner's Guide Second Edition
- Python第三方庫開發(fā)應(yīng)用實戰(zhàn)
- Swift High Performance
- Learning WordPress REST API