官术网_书友最值得收藏!

How to do it...

  1. First, we will show how to install TensorFlow from your terminal (make sure that you adjust the link to the TensorFlow wheel for your platform and Python version accordingly):
pip install --ignore-installed --upgrade https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.3.0-cp35-cp35m-linux_x86_64.whl

This will install the GPU-enabled version of TensorFlow and the correct dependencies.

  1. You can now import the TensorFlow library into your Python environment:
import tensorflow as tf
  1. To provide a dummy dataset, we will use numpy and the following code:
import numpy as np
x_input = np.array([[1,2,3,4,5]])
y_input = np.array([[10]])
  1. When defining a TensorFlow model, you cannot feed the data directly to your model. You should create a placeholder that acts like an entry point for your data feed:
x = tf.placeholder(tf.float32, [None, 5])
y = tf.placeholder(tf.float32, [None, 1])
  1. Afterwards, you apply some operations to the placeholder with some variables. For example:
W = tf.Variable(tf.zeros([5, 1]))
b = tf.Variable(tf.zeros([1]))
y_pred = tf.matmul(x, W)+b
  1. Next, define a loss function as follows:
loss = tf.reduce_sum(tf.pow((y-y_pred), 2))
  1. We need to specify the optimizer and the variable that we want to minimize:
train = tf.train.GradientDescentOptimizer(0.0001).minimize(loss)
  1. In TensorFlow, it's important that you initialize all variables. Therefore, we create a variable called init:
init = tf.global_variables_initializer()

We should note that this command doesn't initialize the variables yet; this is done when we run a session.

  1. Next, we create a session and run the training for 10 epochs:
sess = tf.Session()
sess.run(init)

for i in range(10):
feed_dict = {x: x_input, y: y_input}
sess.run(train, feed_dict=feed_dict)
  1. If we also want to extract the costs, we can do so by adding it as follows:
sess = tf.Session()
sess.run(init)

for i in range(10):
feed_dict = {x: x_input, y: y_input}
_, loss_value = sess.run([train, loss], feed_dict=feed_dict)
print(loss_value)
  1. If we want to use multiple GPUs, we should specify this explicitly. For example, take this part of code from the TensorFlow documentation:
c = []
for d in ['/gpu:0', '/gpu:1']:
with tf.device(d):
a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3])
b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2])
c.append(tf.matmul(a, b))
with tf.device('/cpu:0'):
sum = tf.add_n(c)
# Creates a session with log_device_placement set to True.
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
# Runs the op.
print(sess.run(sum))

As you can see, this gives a lot of flexibility in how the computations are handled and by which device.

This is just a brief introduction to how TensorFlow works. The granular level of model implementation gives the user a lot of flexibility when implementing networks. However, if you're new to neural networks, it might be overwhelming. That is why the Keras framework--a wrapper on top of TensorFlow—can be a good alternative for those who want to start building neural networks without getting too much into the details. T herefore, i n this book, the first few chapters will mainly focus on Keras, while the more advanced chapters will include more recipes that use other frameworks such as TensorFlow.
主站蜘蛛池模板: 太原市| 桓台县| 渝中区| 浦北县| 砚山县| 永平县| 北票市| 阿坝| 进贤县| 辉县市| 库尔勒市| 光泽县| 贵阳市| 山东| 来安县| 稷山县| 义乌市| 互助| 祁阳县| 闻喜县| 元谋县| 新乡县| 商南县| 长海县| 嘉禾县| 安图县| 伊金霍洛旗| 陈巴尔虎旗| 会东县| 襄垣县| 灯塔市| 大竹县| 宝鸡市| 富宁县| 南部县| 安塞县| 阿拉尔市| 库伦旗| 孟津县| 九龙坡区| 万山特区|