官术网_书友最值得收藏!

Programming Environments, GPU Computing, Cloud Solutions, and Deep Learning Frameworks

This chapter focuses on technical solutions to set up popular deep learning frameworks. First, we provide solutions to set up a stable and flexible environment on local machines and with cloud solutions. Next, all popular Python deep learning frameworks are discussed in detail:

  • Setting up a deep learning environment
  • Launching an instance on Amazon Web Services (AWS)
  • Launching an instance on Google Cloud Platform (GCP)
  • Installing CUDA and cuDNN
  • Installing Anaconda and libraries
  • Connecting with Jupyter Notebook on a server
  • Building state-of-the-art, production-ready models with TensorFlow
  • Intuitively building networks with Keras
  • Using PyTorch's dynamic computation graphs for RNNs
  • Implementing high-performance models with CNTK
  • Building efficient models with MXNet
  • Defining networks using simple and efficient code with Gluon
主站蜘蛛池模板: 嘉义市| 浙江省| 连江县| 平江县| 炎陵县| 鹤峰县| 广州市| 黎川县| 兴城市| 抚宁县| 噶尔县| 珠海市| 伊金霍洛旗| 瓦房店市| 武清区| 灵山县| 蒙城县| 朔州市| 吴川市| 合阳县| 南宁市| 临夏县| 丽水市| 湟源县| 任丘市| 通化市| 惠来县| 尼木县| 普兰店市| 泗阳县| 宁都县| 邵东县| 洛川县| 延川县| 葵青区| 古蔺县| 柳州市| 濮阳县| 济宁市| 玉林市| 麻江县|