- Neural Network Programming with TensorFlow
- Manpreet Singh Ghotra Rajdeep Dua
- 71字
- 2021-07-02 15:17:05
Understanding linear algebra
Linear algebra is a key branch of mathematics. An understanding of linear algebra is crucial for deep learning, that is, neural networks. Throughout this chapter, we will go through the key and fundamental linear algebra prerequisites. Linear Algebra deals with linear systems of equations. Instead of working with scalars, we start working with matrices and vectors. Using linear algebra, we can describe complicated operations in deep learning.
推薦閱讀
- 卷積神經(jīng)網(wǎng)絡(luò)的Python實現(xiàn)
- 軟件成本度量國家標(biāo)準(zhǔn)實施指南:理論、方法與實踐
- 數(shù)據(jù)革命:大數(shù)據(jù)價值實現(xiàn)方法、技術(shù)與案例
- Power BI商業(yè)數(shù)據(jù)分析完全自學(xué)教程
- Lego Mindstorms EV3 Essentials
- 網(wǎng)站數(shù)據(jù)庫技術(shù)
- 大數(shù)據(jù)精準(zhǔn)挖掘
- 達(dá)夢數(shù)據(jù)庫運(yùn)維實戰(zhàn)
- Python數(shù)據(jù)分析從小白到專家
- 數(shù)據(jù)挖掘競賽實戰(zhàn):方法與案例
- 商業(yè)智能工具應(yīng)用與數(shù)據(jù)可視化
- Node.js High Performance
- MySQL數(shù)據(jù)庫應(yīng)用與管理
- 數(shù)據(jù)挖掘與機(jī)器學(xué)習(xí)-WEKA應(yīng)用技術(shù)與實踐(第二版)
- 云原生架構(gòu):從技術(shù)演進(jìn)到最佳實踐