- Feature Engineering Made Easy
- Sinan Ozdemir Divya Susarla
- 98字
- 2021-06-25 22:45:50
Unsupervised learning
Supervised learning is all about making predictions. We utilize features of the data and use them to make informative predictions about the response of the data. If we aren’t making predictions by exploring structure, we are attempting to extract structure from our data. We generally do so by applying mathematical transformations to numerical matrix representations of data or iterative procedures to obtain new sets of features.
This concept can be a bit more difficult to grasp than supervised learning, and so I will present a motivating example to help elucidate how this all works.
推薦閱讀
- Hands-On Data Structures and Algorithms with Rust
- Python絕技:運用Python成為頂級數據工程師
- Creating Mobile Apps with Sencha Touch 2
- 數據庫系統原理及應用教程(第4版)
- 數據驅動設計:A/B測試提升用戶體驗
- 中國數字流域
- 數據庫技術及應用教程
- “互聯網+”時代立體化計算機組
- Access數據庫開發從入門到精通
- 數據分析思維:產品經理的成長筆記
- 云工作時代:科技進化必將帶來的新工作方式
- 云原生架構:從技術演進到最佳實踐
- 大數據隱私保護技術與治理機制研究
- 數字化轉型方法論:落地路徑與數據中臺
- 數據會說話:活用數據表達、說服與決策