官术网_书友最值得收藏!

Using the TFLearn Model

Use the trained model to predict or evaluate:

score = model.evaluate(X_test, Y_test)
print('Test accuracy:', score[0])

The complete code for the TFLearn MNIST classification example is provided in the notebook ch-02_TF_High_Level_LibrariesThe output from the TFLearn MNIST example is as follows:

Training Step: 5499  | total loss: 0.42119 | time: 1.817s
| Adam | epoch: 010 | loss: 0.42119 - acc: 0.8860 -- iter: 54900/55000
Training Step: 5500  | total loss: 0.40881 | time: 1.820s
| Adam | epoch: 010 | loss: 0.40881 - acc: 0.8854 -- iter: 55000/55000
--
Test accuracy: 0.9029

You can get more information about TFLearn from the following link: http://tflearn.org/.

主站蜘蛛池模板: 清新县| 洛扎县| 三门峡市| 盐边县| 岳西县| 合山市| 尼木县| 阿拉善右旗| 徐闻县| 油尖旺区| 化德县| 哈密市| 北安市| 高淳县| 洛浦县| 九江县| 响水县| 广昌县| 延长县| 德兴市| 德格县| 永嘉县| 怀安县| 武冈市| 新郑市| 新巴尔虎右旗| 萝北县| 京山县| 侯马市| 内乡县| 富川| 祁东县| 舞钢市| 东港市| 阳东县| 杭锦后旗| 凤凰县| 沂源县| 集安市| 铜川市| 无棣县|