官术网_书友最值得收藏!

TFLearn estimator layers

TFLearn offers only one layer in the tflearn.layers.estimator module:

While creating the regression layer, you can specify the optimizer and the loss and metric functions.

TFLearn offers the following optimizer functions as classes in the tflearn.optimizers module:

  • SGD
  • RMSprop
  • Adam
  • Momentum
  • AdaGrad
  • Ftrl
  • AdaDelta
  • ProximalAdaGrad
  • Nesterov

You can create custom optimizers by extending the tflearn.optimizers.Optimizer base class.

TFLearn offers the following metric functions as classes or ops in the tflearn.metrics module:

  • Accuracy or  accuracy_op
  • Top_k or top_k_op
  • R2 or r2_op
  • WeightedR2  or weighted_r2_op
  • binary_accuracy_op

You can create custom metrics by extending the tflearn.metrics.Metric base class.

TFLearn provides the following loss functions, known as objectives, in the tflearn.objectives module:

  • softymax_categorical_crossentropy
  • categorical_crossentropy
  • binary_crossentropy
  • weighted_crossentropy
  • mean_square
  • hinge_loss
  • roc_auc_score
  • weak_cross_entropy_2d

While specifying the input, hidden, and output layers, you can specify the activation functions to be applied to the output. TFLearn provides the following activation functions in the tflearn.activations module:

  • linear
  • tanh
  • sigmoid
  • softmax
  • softplus
  • softsign
  • relu
  • relu6
  • leaky_relu
  • prelu
  • elu
  • crelu
  • selu
主站蜘蛛池模板: 临城县| 石阡县| 浮梁县| 乳源| 河北区| 永济市| 榆社县| 纳雍县| 南平市| 南澳县| 大宁县| 东乡族自治县| 香格里拉县| 洛扎县| 太仆寺旗| 花垣县| 永年县| 长岛县| 油尖旺区| 同仁县| 和静县| 信阳市| 齐齐哈尔市| 平塘县| 武胜县| 措勤县| 佛学| 岱山县| 富阳市| 建瓯市| 尤溪县| 桓台县| 新民市| 高唐县| 盐边县| 吉隆县| 太康县| 庆元县| 绍兴县| 嘉荫县| 张北县|