官术网_书友最值得收藏!

A TensorBoard minimal example

  1. Start by defining the variables and placeholders for our linear model:
# Assume Linear Model y = w * x + b
# Define model parameters
w = tf.Variable([.3], name='w',dtype=tf.float32)
b = tf.Variable([-.3], name='b', dtype=tf.float32)
# Define model input and output
x = tf.placeholder(name='x',dtype=tf.float32)
y = w * x + b
  1. Initialize a session, and within the context of this session, do the following steps:
    • Initialize global variables
    • Create tf.summary.FileWriter that would create the output in the tflogs folder with the events from the default graph
    • Fetch the value of node y, effectively executing our linear model
with tf.Session() as tfs:
tfs.run(tf.global_variables_initializer())
writer=tf.summary.FileWriter('tflogs',tfs.graph)
print('run(y,{x:3}) : ', tfs.run(y,feed_dict={x:3}))
  1. We see the following output:
run(y,{x:3}) :  [ 0.60000002]

As the program executes, the logs are collected in the tflogs folder that would be used by TensorBoard for visualization. Open the command line interface, navigate to the folder from where you were running the ch-01_TensorFlow_101 notebook, and execute the following command:

tensorboard --logdir='tflogs'

You would see an output similar to this:

Starting TensorBoard b'47' at http://0.0.0.0:6006

Open a browser and navigate to http://0.0.0.0:6006. Once you see the TensorBoard dashboard, don't worry about any errors or warnings shown and just click on the GRAPHS tab at the top. You will see the following screen:

TensorBoard console

You can see that TensorBoard has visualized our first simple model as a computation graph:

Computation graph in TensorBoard

Let's now try to understand how TensorBoard works in detail.

主站蜘蛛池模板: 惠州市| 开阳县| 南岸区| 巩留县| 兴隆县| 富裕县| 积石山| 贡山| 吉安县| 施秉县| 武穴市| 齐齐哈尔市| 东光县| 古蔺县| 孟州市| 基隆市| 霞浦县| 西宁市| 陇西县| 灯塔市| 高安市| 桑日县| 洞头县| 彭泽县| 武鸣县| 鄂托克旗| 蚌埠市| 东乡族自治县| 襄城县| 安达市| 义乌市| 湖北省| 寿阳县| 多伦县| 鄂尔多斯市| 阳原县| 九龙坡区| 土默特左旗| 北安市| 望奎县| 阿拉善右旗|