官术网_书友最值得收藏!

Constants

The constant valued tensors are created using the tf.constant() function that has the following signature:

tf.constant(
value,
dtype=None,
shape=None,
name='Const',
verify_shape=False
)

Let's look at the example code provided in the Jupyter Notebook with this book:

c1=tf.constant(5,name='x')
c2=tf.constant(6.0,name='y')
c3=tf.constant(7.0,tf.float32,name='z')

Let's look into the code in detail:

  • The first line defines a constant tensor c1, gives it value 5, and names it x.  
  • The second line defines a constant tensor c2, stores value 6.0, and names it y.
  • When we print these tensors, we see that the data types of c1 and c2 are automatically deduced by TensorFlow.
  • To specifically define a data type, we can use the dtype parameter or place the data type as the second argument. In the preceding code example, we define the data type as tf.float32 for c3.

Let's print the constants c1, c2, and c3:

print('c1 (x): ',c1)
print('c2 (y): ',c2)
print('c3 (z): ',c3)

When we print these constants, we get the following output:

c1 (x):  Tensor("x:0", shape=(), dtype=int32)
c2 (y): Tensor("y:0", shape=(), dtype=float32)
c3 (z): Tensor("z:0", shape=(), dtype=float32)

In order to print the values of these constants, we have to execute them in a TensorFlow session with the tfs.run() command:

print('run([c1,c2,c3]) : ',tfs.run([c1,c2,c3]))

We see the following output:

run([c1,c2,c3]) :  [5, 6.0, 7.0]
主站蜘蛛池模板: 大邑县| 翁源县| 乡城县| 丘北县| 邵东县| 武夷山市| 贵溪市| 会昌县| 三门峡市| 建阳市| 卓资县| 上饶县| 临泽县| 子长县| 崇州市| 西乡县| 蒙城县| 宜阳县| 兴和县| 旌德县| 溧水县| 昆明市| 西宁市| 青州市| 五大连池市| 驻马店市| 海丰县| 博客| 固镇县| 温泉县| 陵川县| 东港市| 泸水县| 沛县| 南川市| 天等县| 华阴市| 昌吉市| 介休市| 陇川县| 洛川县|