官术网_书友最值得收藏!

Loading data 

Preparing data for deep learning algorithms could be a complex pipeline by itself. PyTorch provides many utility classes that abstract a lot of complexity such as data-parallelization through multi-threading, data-augmenting, and batching. In this chapter, we will take a look at two of the important utility classes, namely the Dataset class and the DataLoader class. To understand how to use these classes, let's take the Dogs vs. Cats dataset from Kaggle (https://www.kaggle.com/c/dogs-vs-cats/data) and create a data pipeline that generates a batch of images in the form of PyTorch tensors. 

主站蜘蛛池模板: 曲阳县| 东明县| 海南省| 德保县| 舒兰市| 墨脱县| 九龙坡区| 苍梧县| 靖边县| 宜丰县| 五峰| 张掖市| 宜兴市| 垦利县| 莎车县| 定州市| 黄浦区| 武穴市| 瑞丽市| 边坝县| 那曲县| 区。| 繁昌县| 寿宁县| 资兴市| 柘城县| 洪泽县| 巴林右旗| 大连市| 北京市| 论坛| 合阳县| 昆山市| 清原| 营山县| 湖口县| 塘沽区| 上思县| 达拉特旗| 鄯善县| 鱼台县|