- Practical Convolutional Neural Networks
- Mohit Sewak Md. Rezaul Karim Pradeep Pujari
- 102字
- 2021-06-24 18:58:53
Dropout
A neural network can be thought of as a search problem. Each node in the neural network is searching for correlation between the input data and the correct output data.
Dropout randomly turns nodes off while forward-propagating and thus helps ward off weights from converging to identical positions. After this is done, it turns on all the nodes and back-propagates. Similarly, we can set some of the layer's values to zero at random during forward propagation in order to perform dropout on a layer.
Use dropout only during training. Do not use it at runtime or on your testing dataset.
推薦閱讀
- 公有云容器化指南:騰訊云TKE實戰與應用
- 數據結構與算法(C語言版)
- 算法與數據中臺:基于Google、Facebook與微博實踐
- 智能數據時代:企業大數據戰略與實戰
- 數據科學工程實踐:用戶行為分析與建模、A/B實驗、SQLFlow
- INSTANT Apple iBooks How-to
- 智能與數據重構世界
- Microsoft Dynamics NAV 2015 Professional Reporting
- Delphi High Performance
- 數字化轉型實踐:構建云原生大數據平臺
- SOLIDWORKS 2018中文版機械設計基礎與實例教程
- MySQL 8.0從入門到實戰
- 大學計算機:理解和運用計算思維
- Oracle數據庫性能優化的藝術
- 工業大數據工程:系統、方法與實踐