官术网_书友最值得收藏!

Layers in the Keras model

A Keras layer is just like a neural network layer. There are fully connected layers, max pool layers, and activation layers. A layer can be added to the model using the model's add() function. For example, a simple model can be represented by the following:

from keras.models import Sequential
from keras.layers.core import Dense, Activation, Flatten

#Creating the Sequential model
model = Sequential()

#Layer 1 - Adding a flatten layer
model.add(Flatten(input_shape=(32, 32, 3)))

#Layer 2 - Adding a fully connected layer
model.add(Dense(100))

#Layer 3 - Adding a ReLU activation layer
model.add(Activation('relu'))

#Layer 4- Adding a fully connected layer
model.add(Dense(60))

#Layer 5 - Adding an ReLU activation layer
model.add(Activation('relu'))

Keras will automatically infer the shape of all layers after the first layer. This means you only have to set the input dimensions for the first layer. The first layer from the preceding code snippet, model.add(Flatten(input_shape=(32, 32, 3))), sets the input dimension to (32, 32, 3) and the output dimension to (3072=32 x 32 x 3). The second layer takes in the output of the first layer and sets the output dimensions to (100). This chain of passing the output to the next layer continues until the last layer, which is the output of the model.

主站蜘蛛池模板: 河池市| 枝江市| 盐亭县| 和平区| 翼城县| 龙游县| 琼海市| 道孚县| 玉屏| 宿州市| 城步| 砚山县| 邯郸县| 安福县| 宿州市| 山东省| 许昌市| 建湖县| 平原县| 榕江县| 清远市| 临海市| 武安市| 台东县| 许昌县| 中超| 深州市| 新兴县| 白沙| 永寿县| 公安县| 怀仁县| 宁化县| 大英县| 青田县| 黑水县| 尚志市| 博客| 于都县| 靖安县| 五指山市|