- Machine Learning with Swift
- Alexander Sosnovshchenko
- 55字
- 2021-06-24 18:55:00
Training the random forest
Training the random forest model is not very different from training the decision tree:
In []: from sklearn.ensemble import RandomForestClassifier rf_model = RandomForestClassifier(criterion = 'entropy', random_state=42) rf_model = rf_model.fit(X_train, y_train) print(rf_model) Out[]: RandomForestClassifier(bootstrap=True, class_weight=None, criterion='entropy', max_depth=None, max_features='auto', max_leaf_nodes=None, min_impurity_split=1e-07, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=1, oob_score=False, random_state=42, verbose=0, warm_start=False)
推薦閱讀
- Learning Cocos2d-x Game Development
- 電腦組裝與維修從入門到精通(第2版)
- 施耐德SoMachine控制器應(yīng)用及編程指南
- Camtasia Studio 8:Advanced Editing and Publishing Techniques
- Internet of Things Projects with ESP32
- LPC1100系列處理器原理及應(yīng)用
- WebGL Hotshot
- Blender 3D By Example
- 微控制器的應(yīng)用
- Arduino項(xiàng)目案例:游戲開發(fā)
- 計(jì)算機(jī)組裝與維護(hù)(慕課版)
- 計(jì)算機(jī)應(yīng)用基礎(chǔ)案例教程(Windows 7+Office 2010)
- The Machine Learning Workshop
- 51單片機(jī)新穎實(shí)例非常入門與視頻演練
- Mastering Adobe Photoshop Elements 2020