- Machine Learning with Swift
- Alexander Sosnovshchenko
- 78字
- 2021-06-24 18:55:06
Smarter time series chunking
We split our time series into chunks of 25 elements length. This introduces delay when the motion type changes from one to another. This can also be fixed relatively easily by introducing sliding windows instead of chunks. With this approach, we don't need to wait for the new chunk to be delivered; we just record a frame or predict a new label every time when we get a new value from the motion sensor.
推薦閱讀
- 深入理解Spring Cloud與實(shí)戰(zhàn)
- 電腦組裝與維修從入門(mén)到精通(第2版)
- Creating Dynamic UI with Android Fragments
- 數(shù)字道路技術(shù)架構(gòu)與建設(shè)指南
- 計(jì)算機(jī)組裝·維護(hù)與故障排除
- 精選單片機(jī)設(shè)計(jì)與制作30例(第2版)
- 現(xiàn)代辦公設(shè)備使用與維護(hù)
- micro:bit魔法修煉之Mpython初體驗(yàn)
- 電腦維護(hù)365問(wèn)
- 電腦軟硬件維修從入門(mén)到精通
- 筆記本電腦芯片級(jí)維修從入門(mén)到精通(圖解版)
- 單片機(jī)原理及應(yīng)用
- FPGA進(jìn)階開(kāi)發(fā)與實(shí)踐
- Hands-On Embedded Programming with C++17
- 三菱FX2N系列PLC入門(mén)與應(yīng)用實(shí)例