- Deep Learning By Example
- Ahmed Menshawy
- 73字
- 2021-06-24 18:52:44
Dimensionality reduction
Dimensionality reduction is sometimes feature extraction, and it is the process of combining the existing input variables into a new set of a much reduced number of input variables. One of the most used methods for this type of feature engineering is principle component analysis (PCA), which utilizes the variance in data to come up with a reduced number of input variables that don't look like the original input variables.
推薦閱讀
- 繪制進程圖:可視化D++語言(第1冊)
- 大數據管理系統
- 大數據項目管理:從規劃到實現
- 網絡服務器架設(Windows Server+Linux Server)
- Seven NoSQL Databases in a Week
- 現代機械運動控制技術
- Photoshop CS3特效處理融會貫通
- Supervised Machine Learning with Python
- 數據掘金
- HTML5 Canvas Cookbook
- R Data Analysis Projects
- 貫通開源Web圖形與報表技術全集
- 軟測之魂
- Mastering Machine Learning with R
- EDA技術及其創新實踐(Verilog HDL版)