- Deep Learning By Example
- Ahmed Menshawy
- 324字
- 2021-06-24 18:52:38
Implementing the fish recognition/detection model
To introduce the power of machine learning and deep learning in particular, we are going to implement the fish recognition example. No understanding of the inner details of the code will be required. The point of this section is to give you an overview of a typical machine learning pipeline.
Our knowledge base for this task will be a bunch of images, each one of them is labeled as opah or tuna. For this implementation, we are going to use one of the deep learning architectures that made a breakthrough in the area of imaging and computer vision in general. This architecture is called Convolution Neural Networks (CNNs). It is a family of deep learning architectures that use the convolution operation of image processing to extract features from the images that can explain the object that we want to classify. For now, you can think of it as a magic box that will take our images, learn from it how to distinguish between our two classes (opah and tuna), and then we will test the learning process of this box by feeding it with unlabeled images and see if it's able to tell which type of fish is in the image.
In this example, we will be using Keras. For the moment, you can think of Keras as an API that makes building and using deep learning way easier than usual. So let's get started! From the Keras website we have:
- ArchiCAD 19:The Definitive Guide
- Mastering Hadoop 3
- Practical Ansible 2
- Seven NoSQL Databases in a Week
- Visual C# 2008開(kāi)發(fā)技術(shù)實(shí)例詳解
- 機(jī)器自動(dòng)化控制器原理與應(yīng)用
- Docker Quick Start Guide
- Spark大數(shù)據(jù)技術(shù)與應(yīng)用
- 學(xué)會(huì)VBA,菜鳥(niǎo)也高飛!
- INSTANT Adobe Story Starter
- Xilinx FPGA高級(jí)設(shè)計(jì)及應(yīng)用
- 電氣控制及Micro800 PLC程序設(shè)計(jì)
- PostgreSQL 10 High Performance
- Mastering SQL Server 2014 Data Mining
- Mastering Android Game Development with Unity